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Chapter T of this report contains a brief introduction to the general
theory of asymptotic expansions, and serves as the theoretical back-
ground for the main part of the report.

In Chapter 11, the most important methods for the asymptotic expan-
sion of functions defined by definite integrals are developed. Double and
multiple integrals are not included.

The remaining two chapters are devoted to the asymptotic expansion
of functions defined by ordinary linear and homogeneous differential
equations of the second order. In Chapter III, the ‘‘large’’ quantity is the
variable in thez differential equation, and the only case discussed in
detail is that of a differential equation for which infinity is an irregular
singular point of rank one with a characteristic equation which has two
distinct roots. In Chapter TV, the “‘large’’ quantity is a parameter in
the differential equation, and the variable is real and bounded. Both
Liouville’s approximation, and its generalization appropriate in a trans-
ition region containing a single simple transition point, are-discussed.

The report is based on a course of lectures delivered in the autumn
of 1954 at the California Institute of Technology. Tke author wishes to
express his thanks to Mr. C. A. Swanson for his very able and valuable
assistance.
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INTRODUCTION

It happens frequently that a divergent infinite series may be used for
the numerical computation of a quantity which in some sense can be
regarded as the ‘’sum’’ of the series. The typical situation is that of a
series of variable terms whose ‘‘sum” is a functicn, and the approxima-
tion afforded by the first few terms of the series is the better the closer
the independent variable approaches a limiting value (often o ). In most
cases the terms of the series at first decrease rapidly (the more rapidly
the closer the independent variable approaches its limiting value) but
later the terms start increasing again. Such series u-ed to be called
semi-convergent (Stieltjes), and nurerical corputers often talk of con-
vergently beginning series (Emde); Lut in the mathematical literature
the term asymptotic series (Poincare) is now generally used. Re shall
see later that asymptotic series may be convergent or divergent.

Let us consider an example first discussed by Euler(1754). The series

(1) S(x)=1-11x+21x2=31x%4e0s =3 (1) n!x"
(]

is certainly divergent for all x # 0, yet for small x (say 1077) the terms
of the series atfirst decrease quite rapidly, and an approximate numerical
value of S (x) may be computed. What function of x does this numerical
value represent approximately?

Euler considers ¢(x) = x S(x). Then

¢'(x)=l!-2!x+3!x2-...= 1—?(1)’
x

or

22 ¢ x) + p(x)=x,
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and ¢(x) may be obtained as that solution of this differential equation
which vanishes as x = 0. Alternatively, we use Euler’s integral of the
second kind,

m-
n!=f e't"dt

o

and obtain

S(x)=f:° e"’dt—xfome"‘t d£+xzf:° e"te?de -

=¥ D e ) de.
[}

If we formally sum under the integral sign, S (x) becomes

oo e—g
(2) f — dt.
1+ xt
o
Now,
(3) f(x)=/ dt
o 1 +xt

is a well-defined function of x, as a matter of fact an analytic function
of x in the complex x-plane cut along the negative real axis, and it is
closely related to the so-called exponential integral. The question then

arises: in what sense does the divergent series (1) represent the func-
tion (3)? To answer this question, we note that form =0, 1, 2,

( xt).#l

1+ xt

)" +

and hence

4) fx)=S§_x)+ R, (x)

where

(5) S,x)= £ (D" alx

n=0
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is a partial sum of (1), and

oo =t ,mtt
©) R, ()= (x)"*" / 'l a
o)

1+ xt

is the remainder.
If Rex > 0, we have |1+ x¢|”' <1 and

() IR_®)] <(m+ 1) |x|=" Re x > 0,

On the other hand, if Re x <C, ¢ = arg x, and 7/2 < * ¢ < m, then
[1+x¢]7" < [cosec ¢,

and

(8) |R, ()] <(m+1)]x|**" | cosec |, Re x <0,

In either case, the remainder is of the order of the first “‘neglected”’
term of S(x), and approaches 0 rapidly as x - 0. The limit is uniform in
any sector |arg x} < 7 ~¢, ¢ > 0. If Re x > 0, the remainder is numeri-
cally less than the first neglected term, and ifx > 0, the remainder has
also the sign of the first neglected term. Thus, for x > O, the series (1)
behaves very much like a convergent alternating series, except that the
smallest term of (1), which occurs when m is approximately equal to %,
determines a limit to the accuracy beyond which it is impossible to
penetrate.

The theory of asymptotic series was initiated by Stieltjes (1886) and
Poincar€ (1886). We may distinguish two parts of the theory. One part,
which we may call the theory of asymptotic serjes, treats topics such as
“sums’’ of asymptotic series (‘‘asymptotic limits’’, ‘‘asymptotic con-
vergence’’), and operations with asymptotic series (algebraic operations,
differentiation, integration, substitution of asymptotic expansions of a
variable in convergent or asymptotic series involving this variable, and
the like). The most comprehensive presentation of this part of the theory
is to be found in van der Corput’s Lectures (1951, 1952) and current
publications by the same author. In these pages we shall restrict our-
selves toabrief introduction to the theory of asymptotic series, and shall
devote most of our attention to the other part of our subject, to the theory
of asymptotic expansions. Here the central theme is the construction and




4 ASYMPTOTIC EXPANSIONS

investigation of series which represent given functions asymptotically.
The functions arc often given by integral representations, or by power
series, or else appear as solutions of differential equations; and in the
latter case the ‘‘variable’’ of the asymptotic expansions may occur either
as the independent variable, or else as a parameter, in the differential

equation.

REFERENCES

van der Corput, J.G., 1951: Asymptotic expansions, Parts 1 and II. National
Bureau of Standards (Working Paper).

van der Corput, J.G., 1952: Asymptotic expansions, Part IIl. National Bureau
of Standards (Working Paper).

van der Corput, J.G., 1954 a: Nederl. Akad. Wetensch., Amsterdam, Proc. 57, 206~
217.

van der Corput, J.G., 1954b: Asymptotic Expansions 1. Fundamental theorems of
Asymptotics. Department of Mathematics, University of California, Berkeley.

Fuler, Leonhard, :1¢34: Novi commentarii ac. sci. Petropolitanae 5, 205-237.
Opera omnia, ser. |, 14, 585-617, in particular, 601 .

Poincare, H., 1886: Acta Math. 8, 295-344.
Stieltjes, Th., 1886: Ann. de I’Ec. Norm. Sup. (3) 3, 201-258.




CHAPTER1

ASYMPTOTIC SERIES

1.1. O-symbols

In general, the ‘“‘independent variable’’ will be a real or complex
variable, but in this chapter x stands for a variabie element of a topo-
logical T,-space (Hausdorff space) except when stated otherwise. The
variable x ranges over a set R, and x is a limit point of R (which may
or may not belong to R). ¢(x), ¥ (x), and similar symbols denote real- or
complex-valued numerical functions of x defined when x is in R.

The following order relations involving the order symbols O, o will be
used. We write ¢ = O(¢) in R if there exists a constant (i.e., number
independent of x) 4 so that |¢| < 4|y} forallx inR; ¢=0(Y) asx > x
if there exists a constant A and aneighborbood U of xso that |¢]| < 4 ||
for all x common to U and R; and we write ¢ = 0 (¢)) as x - x, if for any
given ¢ > O there exists a neighborhood U_ of x| so that |¢] < ¢|y|forall
x common to UU_ and R. lf 4 # 0 in R then the three conditions may be
formulated more simply:¢p = O(¢) in R [as x > x| in R] if ¢/¢ is bounded
in R'las x > x, in R}, and ¢ = 0(¢)) as x » x  if ¢/Yy >0 asx - x .

In the following examples x is a complex variable, and Sp is the
sector 0 < |x| < e, |arg x| < 7/2 — A. The reader should verify each
assertion. (i) e * = 0(x%), e™* =0(x*) as x » o in S, A >0, a arbitrary;
and neither of these order relations holds (for arbitrary a) when A < O.
(ii)e™*=0(x*) as x » e in 50 provided that Re a > O; this order relation
fails to hold when Re a < 0. (iii) e™* = O(x?) in S5 provided that either
A>0and Rea<0 orA=0and Rea=0.

If the functions involved in an order relation depend on parameters, in
general also the constant A, and the neighborhoods U, U involved in
the definitions will depend on the parameters. If A4, U, U, may be chosen
to be independent of the parameters, the order relation is said to hold
uniformly in the parameters.
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Operations with order relations are governed by a number of simple
rules. We shall set out the more frequently used rules for the O-symbol:
the corresponding rules hold for the o-symbol. In the following rules R

and x  are fixed, and the qualifying phrase ‘“‘as x - x,” is omitted
throughout.

If $ = O(y) and a > O then
(1) |e]%*=0(y|D.

o, = O(wi)' i =1, e, & and the a  are constants, then

(2) 2 a; ¢, = 0(Z|a g| |‘/’,,|)'

This relation nolds also for infinite series provided that ¢,=0W)
uniformly in i. In the case of infinite series, equation (2) and similar
statements will be interpreted in the following manner. If £ |a ¢/ | con-
verges then su does = a, ¢, and (2) is true, and if £ |a_ ¢ | diverges
then there is nothing to state.

If ¢,= OW,), i=1,..,k, the a are constants, and | | < ¢ for
i =1, ..., k and for all x common to R and to some neighborhood U of
x,, then

3) Za,¢,= oY)

This relation holds for infinite series provided that ¢.= oW l.) uniformly
ini, and Zla | <eo.

Ifgbl.=0(d;i), i=1 ..., k then
4) D¢ =0Y).

The proof of (1) is immediate. To prove (2),we remark that by assump-
tion there are numbers A, and neighborhoods U of x, associated with
the ¢ .. If the number of the ¢ is finite, there is an 4 larger than all the
A, and a neighborhood U contained in all the U ;, and

Ea,pl<Slal4 v i<aZ]a,) |y,

when x is common to R and u, and this proves (2). If there is an infinite
number of ¢ ,, then the existence of 4 and U follows from the uniformity,
in i, of the order relation. (3) can be deduced from (2) since under the
circumstances envisaged we may take U above tc be contained in U and
then
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AZIa..| ||,[1'.|5.42|ai| v=A4,¢

where 4, = A |a | is a finite constant. The proof of (4) is similar to that
of (2).

Order relations may be integrated either with respect to the inde-
pendent variable or with respectto parameters. For the sake of simplicity
we shall restrict ourselves to integrals with respect to real variables.
Extensions to complex and abstract variables are possible.

Let x be a real variable, let R be the interval a < x < b, and let
¢ =0(yp) asx » b. If ¢ and ¢ are measurable in R then

(5) f’b é(t) dt = O(be (@) de) as x » b.

Proof: U [ 2 | (e)] dt = =, there is nothing to prove. If [ > |¢] dt < o

for some x, then A and X exist so that f b l¢] dt <= and |p(x)| <A4|yY(x)
for X <x < b, and hence

S e@dil< [P 160 de<a [ [w@]de for X <x<b.

Let x be a variable element of the set R in a Hausdorff space, let y
be a real parameter, a <y < 8, and let ¢(x, y) = O (¢ (x, ¥)), uniformly
iny, as x » x . If for each fixed x in R, ¢ and y are measurable func-
tions of y in a <y < f3 then

(6) faﬁ ¢ (x, y‘)dy=0(ff|¢(x,y)|dy) as x> x -

The proof is similar to that of (5). On account of the uniformity of the
G-symbol, A and U are independent of y, [¢] < 4 |y, and (6) follows by
integration of this inequality with respect to y.

It is in general not permissible to differentiate order relations either
with respect to the independent variable or with respect to parameters.
However, some general results on the differentiation of order relaticns
exist in the case of analytic functions of a complex variable (see
sec. 1.6).

T ——
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We conclude this section with a few formulas concerning combinations
of order relations

(7) 00N =0(p)

B) O(c())=0(0(e))=0(o(¥)) =0 (y)
) 0(e) 0(y)= 0O(gy)

(10) O(¢) 0(Y) = 0 (p) o (Y) = 0 (Py)
(11) O(p) + O(p) = O(p) + 0(p) = 0()
(12) o(p) + 0 () = 0 ()

The jcoof of these formulas is immediate, and they can be extended to
combinations of any finite number of order symbols.

In referring to the above rules we shall quote the number of the equa-
tion which expresses th- final conclusion, and we shall use the same
number to indicate the corresponding rule for the o-symbol. For instance,
(1)willindicate eitherthe rule that ¢ = O(¢) and @ > 0 imply |$|*=0 (|¢|?)
or the rule that ¢ = o (/) and a > O imply || %= o (Y| ).

1.2. Asymptotic sequences

In this section R, x, x,, ¢ have the same meaning as in sec. 1.1. A
finite or infinite sequence of functions, ¢,, ¢,, ... , will be abbreviated
as lo 1.

The sequence of functions Y } is called an asymptotic sequence for
x » xin R if for each n, ¢, is defined in R and ¢ ., = o(p )as x»x,
in R.

If the sequence is infinite and ¢ _,, = 0(¢ ) uniformly in n, then g}
is said to be an asymptotic sequence unifcrmly in n. If the ¢ depend on
parameters and ¢ ,, = 0o(¢ ) uniformly in the parameters, then ig }is
said to be an asymptotic sequence uniformly in the parameters.

We proceed to give some examples of asymptotic sequences in which x
is a complex variable, R is the complex plane except when otherwise
specified, and S, is the sector defined in sec. 1.1.

(i) Hx -2 )", x-x;

(ii) 1x™™, x> o0;
(i) bx "}, x-o inSp,
where Re A, > Re A for each n;

(iv) lx- ", x oo,
A, real and Ay > AL for each n;
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-A
V) le*x 7
and x and A, either as in (iii) or as in (iv);
) _ -\
(vi) {e™™*x "}, x - o0 in SA'
andeither A > 0 and the A_are as in (iii) or A > 0 and the A are arbitrary:

(vii) il (xV/I (x+n)}, x > o in Sa» A>=7/2.

The reader should verify that each of the sequences (i) to (vii) is an
asymptotic sequence, and should justify the restrictions imposed upon A
and A in these examples. Why is (iii), with arbitrary Im A , not an asyn-
ptotic sequence for x -+ o in the complex plane (without restriction to
some S,)? The infinite sequence Il (x = n)/T(x + n)}}, n = 1, 2, ... is
not an asymptotic sequence for x + = in any region including unbounded
portions of the real axis, but it is an asymptotic sequence for x » « in
any region whose closure lies entirely in the upper or the lower half-
plane. The finite sequence I['(x - n)/T(x + R}, n =1, 2, ... , N, is an
asymptotic sequence for x » « in any R.

From given asymptotic sequences new such sequences may be ob-
tained by processes which are largely based on the operational rules of
order symbols given in sec. 1.1. In describing some of these processes
we shall restrict ourselves to real variables although extensions to more
general variables are possible. In most cases x_, and R will not be
mentioned: in such cases they are fixed.

Any subsequence ofan asymptotic sequence is an asymptotic sequence.
The proaf follows from 1.1(8).

If ¢ }is an asymptotic sequence ard a >0, then 1| |%} is an asym-
ptotic sequence. The proof follows from 1.1(1).

Two sequences, 1¢ } and 1y }, so conrected that ¢ = G(Y,) and
U, = 0(¢n) for each n, are said to be equivalent. If lg‘:.ni and iu';"} are
equivalent sequences and 1¢ } is an asymptotic sequence, then Wy } is
also an asymptotic sequence. To prove that 1¢ } is asymptotic we remark
that

W,4y =0, 4,)=00(@ N=000W M=0,)

by 1.1(8).

If {¢ 1 and V4 | are asymptotic sequences containing the same number
of functions, then iy | is an asymgptotic sequence. The proof follows

from 1.1 (10).
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If!anl, n=1,..,N, is an asymptotic sequence, a sn=1..,N;
t =051, ...,k <Nis a set of positive constants, a <a, forall

o nti, i
n, i and '

n g, =

Il pMa

o TnilPasd ‘n=l, ..., N -k,

then 1y }is an asymptotic sequence.

In this statement N may be finite or infinite; & is finite. To prove the
statement we remark that it follows from & being finite that for any n and
any € > 0 there exists a neighborhood U, of x so that |¢_,,| < e€ld | in
the common part of U, and R forr =n, n + 1, ... , n + k. We then have

k k
(2) "!ln"'i = iz'o an"'. i |¢n*i+|l S € i=20 an, il¢n4‘J =€ L/jn

The extension to infinite sums is contained in the following theorem.

. Letigp | be an asymptoti.c-sequence uniformly in n,let a, ,n=1,2,...,
£ =‘0, 1, ... be a set of positive constants such that a ., ;<a, for ail
n, { and put

@ w,= £ a8, n=l 2, ..

If the infinite series for s, converges in some neighborhood of x , then
there is a subset R, of R so that x is a limit point of R , all infinite
series (3) converge in R , and Yy }is an asymptotic sequence for x » x
in R, uniformly in n.

Proof: From the uniform asymptotic property of {¢ }, it follows that there
exists a subset R, of R so that x, is a limit point of R, and|¢ , I<|d]
for all x in R, and all n. For x in R,

o’

z a4+, i | pareil £ z a,, dPpa] <o < b3 a,, dP il

so that all infinite series (3) are dominated by the series for . If the
series for ¢, converges in a subset R, of R, and x| is a’ limit point of
R,, we take R, to be the common part of R, and R,. All functions i/
are defined in R , x, is a limit point of R, and on account of the uniform
asymptoticproperty ofl ¢ |, equation (2) with k = e holds uniformly in n.
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New asymptotic sequences may be formed by integration in two
different ways.

Ift¢ (x, y) is an asymptotic sequence uniformly in'y, a <v < [-, for
r » x in R, and if all integrals

@ @ ()= 1" ¢ (x ) dy

exist, then N’nf ts an asymptotic sequence. The proof follows fron
1.1(€6). As in the case of (3), it is sufficient to assume that all ¢, (x,y)
are measurable functions of y, and that ¢, is integrable. The integra-
bility of all ¢ , possibly for & more restricted set R
showing that f|¢ |dy is dominated by [|¢,| dy.

Ifxisarealvariable, Ris the interval a <x < b, l¢ }is an asymptotic
sequence for x » b, and if all integrals

o» then follows by

6) @, ()= "1¢,0) de

exist, then |® | is an asymptotic sequence for x + b. The proof follows
from 1.1 (5), and it is again sufficient to assume that all ¢ are n.easur-
able and ¢, is integrable; the result then follows at least for sorie inter-
vala, <x <b.

Note that the differentiation of an asymptotic sequence does not
necessarily yield an asymptotic sequence. For instance, take

@, =x "[a + cos(x™] n=1 2, ...

Then {¢ } is an asymptotic sequence for x » oo on the real axis, but
N ¢ .
@} is not an asymptotic sequence.

1.3. Asymptotic expansions

In this section and in the following sections,x, x, Rhave the same
meaning as in sec. 1.1; i }, ¢y }, Ix ), ... , are always asymptotic
sequences forx » x in R; f(x), g (x), A (x), ... arc numerical functions
of x defined in R; and a, b, ¢, ... are constants (i.e., independent of x).

The (formal) series = a_ ¢, (x)is said to be an asymptotic expan-
sion to N terms of f(x)as x - %, if

1) flx)= gian¢n(x)+o(¢~) as x-x.

. A Y= = ==
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An asymptotic expansion to N terms will often be indicated as
2 fx)y~3 a_ ¢, (x) toN terms as x » x, inR,

and the qualifying phrase *‘in R*’ will often be omitted. An asymptotic
expansion to 1 term will be written as

(3) fx)~a ¢, (x) x> x,

and will be called an asymptotic representation; and an asymptotic
expansion to any number of terms {i.e., with N = =) will be written

(4) f(x)~Za, ¢ (x) xax,

and called an asymptotic expansicz. An asymptotic expansion may be
convergent or divergent. In most textbooks only the cases ¥ = 1 and
N = o are discussed, but we shall let N stand for any positive integer.

If an usymptotic expansion to N terms, with N finite, involves certain
parameters, we shall say that itholds uniformly in these parameters if
the remainder in (1) in 0 (¢, ) uniformly in the parameters. An asymptotic
expansion (N = ) involving certain parameters will be said to hold

uniformly in these parameters if f — 2 a, ¢, =o0(s,) uniformlyinthe
parameters for each sufficiently larg:::M (but not necessarily uniformly
in 4.).

The formal (finite, or infinite) series £ a_ ¢  will be called an
asymptotic series. If ¢ = x " we shall speak of an asymptatic series
of powers, and if ¢ = x ", of an asymptotic power series. For instance,
S(n - 1)! (-x)""' is the asymptotic power series expansion for x » 0 in
S - /2+< of the function f(x) defined by equation (3) of the Introduction.
Some authors speak of asymptotic power series when ¢ =¢,(x) xin
but it is more appropriate to call the series divided by ¢ (x) an asym-
ptotic power series.

From (1) it follows that the coefficients in an asymptotic expansion
to N terms may be computed by means of the recurrence formula

®) a,=lim =T o, ¢,V @ m=1, ., N

> x n=
> %

5 g—— P g
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Convers:ly¥ suppose that we have N + 1 functions,
f(x), ¢,(x),..., & p(x)
defined in R. If (5) holds and a, #0 form =1, ..., Nthen i }lis an

asymptotic sequence for x » x , and 3. a_¢ is an asymptotic expansion
to N terms of f(x) as x » x . '
To prove that {¢ | is an asymptotic sequence we have to show that

P =olp,)form=1,..,N - 1. Now from (5),

f- £a,6,~06,),

and if we replace m by m + 1 in (5) we have

f- i a,b,=0 4, Pastold 4y

n=1
Comparing the last two equations we find

le 4, +oW)o_,, =0( ).

Ha_, AOthena, , +0(1)#£0 for x in some neighborhood of x ,, and
we may divide by this factor to see that ¢_,, = o(¢ ). Thus i¢ | is
an asymptotic sequence. Moreover, (5) with m = N shows that (1) holds,
and T a_¢ is an asymptotic expansion to N terms of f.

If £ a_ ¢ (x)is an asymptotic expansion to N terms of f(x), then
the same formal series will also provide an asymptotic expansion to
any lesser number of terms of the same function. We also have the
somewhat sharper result '

M
6) fx)= X a ¢ (x)+0(,,,) x+x, M=1..,N-1
n=1

which is an immediate consequence of (1).

With x and R fixed, (5) shows that the asymptotic expansion to a
given number of terms of a given function is unique if the asymptotic
sequence is given. On the other hand, one and the same function may
have asymptotic expansions involving two different asymptotic se-
quences, and the two sequences need not be equivalent in the sense of-

¢ This theorem was suggested hy Dr. A.G. Mackie.

aAr—= -
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sec. 1.2. For instance,

1 -
— ~E (DT

l+x X oo
1
mz{t-l]:-h X » oo
l+x
—_— B =D (P 1) x - o0
l+x

In this example all three asymptotic expansions are convergent series
when |x| > 1. It often happens that some asymptotic expansions of a
function diverge while others converge. The transformation of divergent
asymptotic expansions into convergent ones is of great analytical, although
of very little computational interest. Transformations of asymptotic expan-
sions into convergent expansions or else into expansions more suited to
numerical computation have been investigated among others by Airey
(1937), van der Corput (1951), Miller (1952), van Wijngaarden (1953),
Watson (1912b).

An asymptotic expansion does not determine its ‘‘sum’’, f(x), uniquely.
For instance, the functions (1 + )™, (1 + e™*)/(1 +x), A + e~V  + x)~'
all possess the asymptotic expansion L(-1)""' ™" as x » = in Sp,
A > 0. A given (finite or infinite) asymptotic sequence, {5 |, for x » x
in R establishes an equivalence relation among functions defined in R:
f(x) and g (x) are asymptotically equal with respect tol¢ } if

fx)-gx)=o0(¢p)) as =x-x, in R,

for all n occurring in the sequence. An asymptotic series represents a
class of asymptotically equal functions rather than a single function.

1.4. Linear operations with asymptotic expansions
If f~X a ¢ _and g~ > bn b . both to N terms, and if a, B are

constants, then

(1) af(x)+Bglx)~Z(aa_+ L6 )¢, (x) to N terms.

The proof of this theorem is obvious, as is its extension to a linear
combination of an arbitrery finite number of asymptotic expansions. The
extension to an infinite series uf asymptotic expansions is as follows:
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Iff(x)~Za, ¢ (x)toN terms, uniformly ini, i=1,2, ..., and if
the a ;are constants for which X a converges absolutely and

@ 4,- £a, .a

i

converges for each n, then X a_f (x) converges in some neighborhood of
x , and

@) Fhkx)= .of,' a,f(x)~ZA ¢ (x) toN terms.

Proof: We have
N
fi_ b3 an i¢n=o(¢N)
n=1 .

uniformly in i, and 2 ja | < ». By 1.1(3),

°2° ai(‘ft— g an.i¢n)=o(¢N)’

i=1 n=1
and the infinite series on the left is convergent at least in some neigh-

borhood of x ,. Adding ﬁ A ¢, to both sides we have (3) when N < e,

n=1

If N = o then both the assumptions and the conclusion hold for 2ll
sufficiently large N, and hence X 4 ¢ s an asymptotic expansion of
F (x).

More generally, we may extend (1) to finite or irfinite asymptotic
expansions.

Lett¢ }yn=1, ..., N <eoand W 1, m=1, ..., M < = be asymptotic
sequences for the same R, x; and let ¢, = O(¢ ) for each m: if
f~3a_¢, toN terms and for eachn, ¢ -~ Xb_ ¢, toMterms, then

(4) f(x)~Zc_ ¢, (x) tolM terms,

where
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Let ip Y, n =1, 2, .. ,and ly }, m = 1, ... , M < = be asymptotic
sequences; suppose that for each n there is an integer u(n) < M so that
y(n) + M as n » « and ¢n = 0(1//#(")); f f~3 a, ¢"’ ¢n ~3 b.n (,0.
to M terms uniformly in n,3, a_ is absolutely convergent, and the infinite
series in (5) is convergent for each m; then (4) holds.

The proof for M, N finite is immediate, since then

fx) = _g‘an¢n+o(¢lv)

N N
= X a (X6 Y +ol,N+0(y,)

n=1 a=1 .an

by 1.1(3). If M = oo, then the same reasoning holds for any M, and hence
3 ¢, ¢, is an asymptotic expansion (with M = =) of f(x). Ir the exten-
sion to V = oo we use the extension of 1.1(3) for infinite series.

We now turn to the integration of asymptotic expansions either with
respect to a real parameter y, or with respect to the variable x. In the
latter case x will be assumed to be a real variable.

If flx, y) ~ 3 a, (y) ¢ _(x)to N terms, uniformly in y, a <y < B, if
f(x, y), for each fixed x, and a (y), for each fixed n, is a measurable
function of y, and if h(y) is an integrable function of y for which each of
the integrals

©) 4 =L hiora,6)dy

exists, then also the integral
@ F@ =L ko) () dy
exists for each x in some neighborhood of x , and

B F(x)~XA4_ ¢ (x) toN terms.

The proof is very simile. to that given above for infinite series,
except that 1.1(6) must be used instead of 1.1(3). Some generalizations
of this theorem are obvious: the interval (aq, 8) may be replaced by any
measurable set, of finite or infinite measure, and there is a similar result

for multiple integrals.

oy n Y=
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Let x be a real variable, let R be the interval a < x < b, let l(f)n(x)! be
an asymptotic sequence of positive functions for x » b, and assume that
each of the integrals

@) © ()=J" ¢ ()di

exists. If f(x)~ 3 a_ g:Sn(x) to N terms as x » b, and f(x) is a measurable
function, then

(10) F(=)= J° f(e) de

exists in some interval ¢ < x < b, and

(11) F(x)"'zan(bn(x) to NV terms as x + b.

The proof follows from 1.1 (5).

It is, in general, nct permissible to differentiate asymptotic expan-
sions either with respect to the variable x, or with respect to parameters.
Some general results on the differentiation of asymptotic expansions of
analytic functions of a complex variable exist and will be given in sec.

1.6.

1.5. Other operations with asymptotic expansions

Multiplication of asymptotic series does not in general lead to an
asymptotic series, for in the formal product of T a ¢ and £ b ¢ all
products ¢ _ ¢ occur, and it is in general not possible to arrange the
system of functions {¢ ¢ni, m,n =1, ..., N so as to obtain an asym-
ptotie sequence. There are, however, important special asymptotic
sequences | ¢ | with the property that the products ¢ ¢ either form an
asymptotic sequence, or else possess asymptotic expansions in terms of
an asymptotic sequence (which need not be {¢ }). First we shall prove a
general result on the multiplication of two asymptotic expansions.

Let lg&ni, n=1 .., N, h//_}, m=1 ..,M andiy,}, k=1, ...,Kbe
three asymptotic sequences such that ¢, ¢, = O(x,), Dy ¥, =0(x),
and

1) ¢ ¥, ~Zc X, toKterms.
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Iff¥“Xa_ o to N terms and g ~ X b_ y to M terms, then fg ~3 C, x,

to K terms, where

@ ¢c,= £ £ ab_c

n=1 a=1 nmk ©
Here K may be finite or infinite; N, M are finite. The result remains true
¢f M, or N, or both M and N are infinite, provided that each of the in-
finite series (or double series) in (2) converges.

The coefficients C are those obtained upon multiplication of £ a &
and X b_ ¢ and substitution of (1) so that instead of (2) we may say
“where the coefficients C, are obtained by formal substitution’’, and
this description will be used in similar cases throughout this -section.

We first prove the theorem for finite N, 3, K.

fo=t Sa, 0,40l £ 5 v +ow,)

M=

gl a b o ¢ +o(d, (,!1”)+o(¢’>~ ¢,)

n=1 a=1

= k_ﬁ‘ Coxptolxg)+old, ¥,)+old, ¢,

by (1) and (2). This proves the result. If (1) holds to any number of terms
and ¢, v, and Gy ¥, are O(x,), for any k, then the above computation
holds for any K, and the extension to K = o holds. The extension to
infinite M, N can similarly be justified provided that the infinite series
defining C, converge.

A sequence of functions, ¢ }, n =1, ..., N will be called a multipli-
cative asymptotic sequence if i } is an asymptotic sequence, ¢, = O(1)
and b, b~ p) € nak 96& toN terms, m, n=1, ... , N. In the case of a
multiplicative asymptotic sequence the former result on the multiplication
of asymptotic expansions can be extended considerably.

Ifig ), n=1, ..., Nis a multiplicative asymptotic sequence,

fi~Za, .o, toN terms i=1,..,k,

and P(z, ee0, 2 ,)is a polynomial in the k complex variables z,, ..., Z o
then F(x)= P(f,, ..« » f}) possesses an asymptotic expansion 2 A &,
to N terms, and the coefficients A may be computed by formal substi-
tution.
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To prove this theorem we remark that in the case of a multiplicative
asymptotic sequence {¢ | we have ¢, ¢y = 0($,), and we also have an
asymptotic expansion of ¢ ¢_ to N terms. By our general theorem, it
follows from f ~ 3 a ¢ toNterms andg ~ X b, ¢, toN terms that fg
possesses an asymptotic expansion X c¢_ ¢ to N terms, and the coef-
ficients ¢ may be computed by formal substitution. The evaluation of
any polynomial P(f,, ..., f,) can be reduced to a finite number of oper-
ations each of which involves either a linear combination, or the multi-
plication, of twa asymptotic expansions. Each of these operations pre-
serves the asymp: tic character of the expansion, and in each operation
the resulting expansion may be computed by formal substitution. Hence
the theorem. ‘

The result obtained for polynomials can, under certain circumstances,
be extended to (convergent) power series, and even to asymptotic power
series. For the sake of simpli city, we shall restrict ourselves to the case
of a single variable z; there is a generalization to the case of several
variables.

Letig }, n =1, ..., N be a multiplicative asymptotic sequence such
that ¢, = 0(1),-and |¢,|¥ = O(¢,) for some positive integer M. If
f(z)~Xc,_ 2" to M terms as z » 0 in the complex plane, and

z=z(x)~Xa_ ¢, toNtermsasx-x,inR,

then F(x) = f(z(x)) possesses an asymptotic expansion X A n P, to N
terms as x » x,, and the coefficients A may be computed by formal
substitution.
Proof: From the assumptions it follows that z* possesses an asymptotic
expansion £ b_ ¢ to N terms, and also that z¥ = O(¢ ). Hence we can
apply the theorem in sec. 1.4 on the substitution of an asymptotic expan-
sion into an asymptotic expansion.

An important particular case concerns functions f(x) which possess
asymptotic expansions of the form

® f@=c+ £ a6, 100,

The theorem shows that [f(x)]™' also possesses an asymptotic expan-
sion of this form provided that ¢ ¥ 0 and {¢ | satisfies the assumptions
of the theorem. In other words, asyniptotic expansions of the form (3) may
be divided. This enables us to extend the last theorem but one from

polynomials to rational functions.
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Iflol,n=1,...,N is a multiplicative asymptotic sequence, ¢ =0 (1),
|_¢',|” = 0(¢N) for some M, fi~Za, .p toNterms, i=1, ...,k and
P(z‘, e 5 2,)is a rational function in the k complex variables z , ..., z,
such that the denominator is different from zero when z =z, ,==z, =0;
then F(x)=P(f,, ..., f,) possesses an asymptotic expansion A, +2Z A &,
to N terms, and the coefficients A may be computed by formal substi-
tution.

Under the same conditions we also have an asymptotic expansion for
g(F (x)) if g({) is a function of the complex variable ¢ which is regular
in some neighborhood of £ = P (0, ... , 0). In this manner we may justify
the asymptotic expansions of expressions such as exp{P(f,, ... , f)].

1.6 Asymptotic power series

The sequence of functions {x™ ™}, n =0, 1,2, ...orn=1, 2, ... isa
multiplicative asymptotic sequence for x + o inany region of the complex
plane which does not include the origin. This sequence satisfies all the
conditions imposed upon asymptotic sequences in the two preceding
sections, except that in some of the theorems of sec. 1.5, n = 0 must be
excluded. Besides, this system has some special properties.

The asymptotic expansion

a a
(1) f)~a,+—+—35+++ toNtermsasx + oo
x x

is an asymptotic power series. From the results of sections 1.5 and 1.6
it follows that an asymptotic power series expansion may be muitiplied
by a constant, and that two such expansions may be added or multiplied,
and also divided provided that a, # O inthe expansion in the denominator.
Asymptotic power series may be substituted in finite linear combinations,
in polynomials, in rational functions provided that the denominator does
not vanish as x + o, and in asymptotic or convergent power series
S ¢, z", z » 0, provided that in the expansion (1) of z = f(x) we have
a, = 0. Substitution of (1)inothertypes of convergent or asymptotic series
is valid under the conditions set out in sec. 1.5. In all these cases the
coefficients of the new expansion are obtained by formal substitution
and a remrangement of terms. An asymptotic power series expansion (1)
which is valid uniformly in a parameter may be integrated with respect
to this parameter. Lastly, if (1) holds, then f(x) —a, — a /x is inte-
grable, and
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@ F&)=f" [[(z)- a, -i] de
x t

~ e A i vee. toN -2 terms as x - oo,

x 2x% 3x3

A simple corollary of this last result is the following theorem on differ-
entiation. If f(x) in (1) is differentiable and if f’(x)possesses anasymptotic
power series expansion, then

a
(3) f'(x)"‘——-;-—-——z———a-—w» toN-1terms as x - oo,
x

In the case of analytic functions a more definite statement can be
made in that it is not necessary to assume that f“(x) possesses an
asymptotic power series expansion. Let R be the region

|| >a, a<argx<§pB,

leta, >a,a<a, < B, <P, and let R, be the region
x| >a,, a,<argx<f,.

If f(x)is regular in R and (1) holds uniformly in arg x as x + = in R, then
(3) holds uniformly in arg x as x » « in R,. The proof of this theorem
follows from Cauchy’s integral formula for the derivative,

1 f(z)
(x) = — dz.
& e 27.’1:‘/; (x - 2z)2 :

For given R, R,, there exists an ¢ > O so that for each x in R, the
circle with center x and radius ¢|x| is in R, and we may take this circle
as the contour of integration in (4). Along the circle, z = x + exe *, and
0 <t < 27, so that (4) becomes

27
/ e " flx(1+ eeif)]dr.

(5) fx)=

27xe¢
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Now, e "' f(x + ¢ e *)] possesses an asymptotic power series expansion
uniformly in ¢, and this may be integrated with respect to ¢, showing that

l[;'(::))possesses an asymptotic power series expansion which turns out to
e (3).

Asymptotic power series expansions are usually valid in sectorial
regions, and analytic functions possess different asymptotic expansions
in different sectors (Stokes’ phenomenon). That something like this must
nappen, except in the case of an analytic function which is regular at
infinity, follows from the following theorem.

If f(x) is single-valued and regular when |x| > a, and (1) holds for all
values of arg x, then the power series in (1) converges for sufficiertly
large values of |x|, and its sum if f(x). To prove this, we set x = 1/¢&
and g(0) = a_, g(é) = f(1/£),0 < |£| < |a|™'. Then g(&) is a single-
valued continuous function in |£} < |a|™", and is regular except possibly
at £ = 0. However, at £ = 0, g has certainly no pole, nor an essential
singularity, since it is bounded in any neighborhood of ¢ = O. Thus,
g (&) is regular at £ = 0 and possesses a Maclaurin expansion. From the
uniqueness theorem on asymptotic expansions it follows that (1), with
x = 1/&, must be the Maclaurin expansion.

1.7. Summation of asymptotic series

It has been pointed out in sec. 1.3 that an asymptotic sequence
{¢ | determines an equivalence relation between functions defined in R.
Two functions defined in R are asymptotically equal if their difference is
o(¢,) for all n. Asymptotically equal functions possess identical asym-
ptotic expansions, and given an asymptotic expansion f ~ X a ¢ , we
may define the class of all functions which are asymptotically equal to f
as the sum of the asymptotic series T a_¢ .

We shall conclude this chapter by proving that every asymptotic
series possesses a sum. Results of this nature have been proved for
asymptotic power series by Borel and Carleman (1926), for series domin-
ated by an asymptotic series of powers by van der Corput (1954b), and
for asymptotic series of analytic functions by Carleman (1926). The
proof given below is an adaptation of van der Corput’s proof.

An asymptotic series is a formal finite or infinite series 3, a_ ¢n(x)
where 1¢ | is an asymptotic sequence and the a  are constants. Since
any subsequence of an asymptotic sequence is also such a sequence,
we may assume that @ _# O for each n. The asymptotic sumof 2 a ¢ is
a class of asymptotically equal functions, and we shall demonstrate
the existence of the asymptotic sum by constructing a member of this
class. f £ a_ ¢ is a finite asymptotic series, then the sum
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a, ¢| +erday ¢”

in the ordinary sense may be taken as a representative of the asymptotic
sum. It is sufficient, then, to give the proof for an infinite asymptotic
series X a ¢ _in which a_# 0 for eachn.

Let U, be a nexghborhood of x , and for eachn = 1, 2, e let U be a
nexghborhood of x| such that the closure of U is in U _, and

1
9,4y Ppasl < 35 o, &,
for all x common to U_and R: such a neighborhood exists since

an+| ¢n+‘ =0 (an ¢n)-

Foreach nlet p_(x)be a continuous function of x such that 0 < (x) <1
in R, p (x) = 0 when z is outside U_ and p (x)= 1 when x isin U _,,:
such a function exists since the closure of U ., is contained in U, . Then

W) 181y ey 6,0, <270, 6, ()]

ntp K,
when x is in U , for this inequality holds by the construction of the U’s
if x is in Un_,p, and the left-hand side vanishes when x is outside U_,

Let

P‘

@ f@= £ a, 4,6,

The series converges for all x by (1), and defines a function f(x) in R.
(Actually, the series terminates except for those x which are in all the
U,.) To show that f~ X a ¢ as x> x,, fix ¥V and let x be in the
common part of Uy, ., and R. Then p (x)=1forn=1, .., N, and by (1)

] N oo - .
II- "E’a" ¢"| = Nzﬂ |a" Ka ¢"| S ‘aNﬂ ¢N+|l NEM 2

= 2|aN+| ¢N+ll = 0(¢~).

Thus it is seen that £ a ¢ is an asymptotic expansion to any nunrber
of terms of f defined by (2). The asymptotic sum of £ a ¢, isthe class
of all functions asymptotically equal to f.
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The U_ may be constructed in such a manner that x, is the only point
common to all the U'l in which case the series in (2) terminates for all
x £-x,. If all the ¢»_are continuous in R, also f will be continuous in R.
If x is a real variable, or a point in n-dimeusional Euclidean space, the
#,(x) may be chosen as infinitely differentiable functions, and if all the
¢, are k times continuously differentiable (¢ < =), then f(x) will also be
k times continuously differentiavle. Carleman has proved that for certain
analytic functions ¢ of a complex variable x, the asymptotic sum con-
tains a function which is an analytic function of x.

In general there is no way of ascribing a unique asymptotic sum to
an asymptotic series. but under rather special circumstances it may
happen that under more precise assumptions on the coefficierts of the
asymptotic series, and under certain restrictions on the functions f(x),
a unique sum may be obtained; and frequently in such cases the asym-
ptotic series, though divergent, is in some sense summable ‘o its asym-
ptotic sum. Such theorems for asymptotic power series summed by
analytic functions regular in some sectorial region were obtained by
Watson (1912a) and Nevanlinna (1916).
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CHAPTER II
INTEGRALS

There are several methods for obtaining asymptotic expansions of
functions defined by definite integrals. Copson (1946) gives a survey of
these; and further material is contained in van der Corput’s Lectures and
in the references given at the end of this chapter.

2.1. Integration by parts

Asymptotic expansions may frequently be obtained by repeated inte-
grations by parts. As an example, let us consider the function f(x) defined
for -7 < arg x < 7 by the integral

) e-t
= dt.
(1) f(x) f T t

[}

Integrating by parts repeatedly,

oo o=t
@ f@)=1 [ s &

b -t
=1-=x+2x2/ : > dt
0 (1 +xt)

o0 =t
$ D"alx"+ (=1)"" (m+1)xx-“/ e
[+]

n=0

26
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The last integral may be proved to be O (1) as x - 0 in Sp, A > —7/2, so0
that we have obtained a new derivation of Euler’s asymptotic expansion
discussed in the Introduction.

The field of application of this method is somewhat limited, and it is
not at all easy to formulate precise theorems of sufficient generality. In
what follows we shall describe some results which seem to be basic.

For any function f(¢), let f_ denote the m-th derivative, and f__ the
m-th repeated integral, so that

. d*

(3) f°=f, f. =—dtT[ m=1 2, ...
df__ .

(4) T = f a1 m=1,2 ....

Note that f__ contains m constants {(one from each integration) which we
suppose to have been chosen in some suitable manner. The formula

6 [fe®h®de="S s +R,,

. n=0

where

6) s, =g (BYh_ _,(B)- g, (@h_,_(a))

@ R,=C0"[Lg h W,

is obtained by repeated integrations by parts. If (a, B) is a finite interval,
(5) is valid provided that g is N times continuously differentiable and A
is integrable; if (a, B) is an infinite interval then all the integrals in-
volved, and alsothe limits of g_(t) h_,_, (t)as t » a, B, must be assumed
to exist.

If g is N + 1 times continuously differentiable, a further integration

by parts shows that

8 Ry=sy+Ry,,

and in certain cases it is possible to use this relation to compare the
“remainder’’, R, with the first ‘“‘neglected term”’ Sy
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‘If g and hk are real, and 84 h-N and g, ., h-N-i have constant and
equal signs for a <t < B, then R, has the same sign as s y» and |R |
< Isyl- The proof follows from (8? on noting tiiat in this case R, and

R, ., bave opposite signs, and hence R, and s, must have the same
sign, and

iR

Nl = |s]v| - an-Hl
If g is real, lh-N-l| is an increasing function of t, and En By +1
have constant and equal signs for a <t < p, or else if g is real, oy -y
is a decreasing function ‘of t, and 8 x> &y +1 have constant and opposite
signs for a <t <, then R, | <2]|s |
We shall prove this resuf't when ﬁz_N-|| is an increasing function of ¢
and g, >0, g, >0. Then

lRN +|| < |h—~—| (B)I (SN (ﬁ)—gn(a))

< Ih—}v -1 (B) gN(B)| - lh—ﬂ—l(a) &y (a)l
Slh_y-1 (B gy B -k_,_,(a) g, (a)l

and hence |R, ,,| < |s,|. From (8) we then have the desired result. If
gy $O0and g, ., <0, replace g by —g. The result for decreasing |4
follows on replacing x by ~x.

As an application of these results, let us consider f(x) as delined by
(1). x>0, putg(e)=Q +x)"", he)=e "4 h__(t) = (-1)* ™" In this
case g_k__ >0 forallt>0, and hence 0 < (-1)*" R_<(1)"s_.Ifx
is complex our results do not apply. However, if in (1) we replace ¢ by
t/x aund accordingly set g = (1 +¢)”', A = x~' exp(~¢t/x), and then letx
become complex, with Re x > 0, then g_ and g_,, are of constant
and opposite sign, and |A___,| is a decreasing function of ¢, for ¢ >0,
and hence |R_| < 2|s _|. (Actually, in this case it is easy to prove from
(7) that [R_| < Is 1)

Let us suppose now that the integrand in (5), and hence alsos , R,
dcpend on a variable x. If s | is an asymptotic sequence, and if in
addition we are able to prove R, = O(s,) by one of the above results,
or in some other manner, then (5) provixfes an asymptotic expansion of
the integral to N terms. For instance, in the case of (2), Ix"} is an
asymptotic sequence for x + 0; we have proved |R, | < 2|s,| for any N
and Re x >0, and hence (2) is an asymptotic expansion of f (x) as defined
in Sp, A >0, {Actually, we proved in the Introduction, and could prove
from the last integral in (2), that the asymptotic expansion holds in the

il

T p———
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more extended region SA’ A>-n/2]
An asymptotic sequence is l often occurs if 4 (¢) = k (xt). Denoting by

k__ (@) the m-th repeated mtegxal of k (u) with respect to u, we obtain
from (5),

@ [Pemkandia E DM g (B k., (Ba)

n=0
-g,(@k_ _ (ax)]+ R,

If the ik _ , @) are bounded, and the g.(BYk_ _,(Bx)- g,(a) k_ , (ax)
are bounded away from zero, and if RN can be estimated as above then
(9) is an asymptotic expansion as x - e, the region of x being determined
by the estimate of R, . The apparently more general case k (¢) = k [x ¢ (¢)]
can be reduced to the former case by breaking np (a, B) into sub-inter-
vals in which ¢(t) is monotonic, and introducing ¢(t) as a new variable
in each of these sub-intervals. In applying one or the other of the above
criteria for the estimate of RN’ we then need information about derivatives

of the form

dg* | ¢ |°
If ¢ and ¢ have derivatives of constant or alternating signs, this infor-
mation can be obtained without explicit computation from results on
absolutely and completely monotonic functions, see, for instance,
Widder (1941) Chapter IV. General theorems of this nature have been

obtained by van der Corput and Franklin (1951). The most important
zpplication of these methods is to integrals of the form

81n

[Pe@e®®de,  [° g() C95[xh (1)) de.

More general results involving functions of the form g(¢) = (¢ - a)_)\g|(t)
with g, (t) possessing continuous derivatives were obtained by van der

Corput (1934).

2.2. Laplace integrals
Integrals of the form

(1) /(x)-j e~ (1) dr = Qg
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are called Laplace integrals. Such integrals occur in the solution of
differential equations by definite integrals, and in many other problems.
The infinite integral in (1) will be interpreted as the limit of [T as
T + o, and it will always be assumed that ¢ (¢) is integrable over any
interval 0 <t < T, T < . A function ¢ will be said to belong to L (x)
if the integral in (1) exists, in the sense mentioned, for x = x,. It is
known (Widder, 1941, Chapter II) that for a function ¢ in L (x,), Qi¢}
exists, and represents an analytic function of x, in the half-plane
Re(x ~ x)) > 0. In particular, if ¢(¢) is integrable cver any interval
0<t<T, T< oo, and ¢(t) = O(e ") for some constant a, as ¢ - oo, then
Llplexists as an (absolutely convergent) infinite integral, and repre-
sents an analytic function of x, in the half-plane Re (x — a) > 0.

Under certain circumstances, the asymptotic behavior of f(x) as x » =
may be investigated by integrations by parts. If ¢(¢) is N times con-
tinuously differentiable for 0 <t < a and belongs to L(x,) for some x,
then

(2 fx)~Z pNO)x™!

to N terms, uniformly in arg x, as x » 0 in Sp, A > 0. To prove this, let
Re (x = x,) >0, and let

@) f)=[ e™p@)de+ [~ e p(0) de.

The second integral exists and may be integrated by parts to give

[ -t e N Ly,
: x -"xo a

where
p@= e ° ¢ du
is a bounded function, say |¢/| < 4 for ¢t > a, so that

‘ e~ (P=py)a _
FARS = 0(e™"")

"z ==l P =Pl
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88 ¥ = p + {0 » o in SQ’ A > 0. In the first integral use 2.1(5) with
g=d) h_ =(x)"e™ "

s = [¢ (n)(o)_ ¢ (n)(a) e“za] x—n-!
= ¢(n)(0)x-n-l + O(e'pa)

and

Ry=x"N["¢W()e tar.
Here ¢ V) (p), being continuous, is bounded, say |¢ (”)(t)l <BforO<t<a,
and

IRy <B|x|™ p7 < B|x|™" ' cosec A=0(=""""),

uniformly in arg x, as x + o in Sps A > 0. The proof is completed by
noting that O (e ™”°%) =.0 (x™¥), uniformly in arg x, as x » = in Spn» A> 0.
A considerable extension of the last theorem may be based on the
following LEMMA Let ¢ (¢t) and ¢(¢) be in L (x_) for some x_, y(t) > O,
f=Q1igl, Qiyl. If e®? g(p) » = as p-»ooforeacha>0 and if
o(t) = o((,ll(t)) as t + 0, then f(x) = o(g(p)), uniformly in arg x, as
x=p+io+einSp, A>O0.
Proof: Given ¢ > 0, there exists an a > 0 so that |¢] < €y for 0 <t <a.
With this @, decompose 21i¢} as in (3). As in the proof of the previous
theorem, the second integral is O (¢7%°) as p » =, and

|.j:e-"‘¢(t) di| S(J;ae—ptlll(t) dt = € g(p).

If &) (
g () s g(p)

and this is < 2¢ for sufficiently large p. The uniformity in arg x follows
from the remark that |x|/p < cosec Ain S,.

From this lemma the followingthecrem can be deduced. Forn=1,..., N,
let ¢ _(¢) be in L (x,) for some x, ¢ (¢) >0 forz >0, and g = Qiyl.
If 1y 1 is an asymptotic sequence [or t+0,cnd e®” g (p)» o asp- oo
for each a > 0 and each n, then tg, (p) is an asymprotic sequence. for
p » +oo; and if under these circumstances ¢(t)is in L(x ) and

Thus
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p)~Za, ¢ () toNtermsasc-0,
then
flp)~Za_g (p) toNtermsasp -+ +oo.

If in addition for each n =1, ..., g.(p)g  (x) is bounded in Sp for
sufficiently large |x|, then also lg_ (x)f is an asymptotic sequence, and
fix)~Za g (x)to N terms, umformly in arg x, as x » « in Sp, A >0,
Proof: From the lemma we have 8n+1(P) = 0(g (p)), and hence ig (p)}
is an asymptotic sequence for p » « - To prove the asymptotic expansion
for p + o, replace ¢ by

N
¢~ 2 an‘/’ns

and ¢ by Yy in the lemma. When x» e in S5, we have from the lemma and
the additional assumption on g, (x) that

g,)
g (x)

£ 0@ =0(g (o) =

o(g ¢x)) =0 (g (x)),

and hence {g_(x)} is an asymptotic sequence for x + o in S 5. The proof
of the asymptotic expansion is the same as in the previous casc.
The most impo.tant particular case of our general theorem is

A ~1
Y =t ", 0<)\,<-».<A~.
All conditions of the theorem are satisfied: in particular, for

. -A
g, =" )z "

we have

|g :’;; ( d ) < (cosec A) 2
4

for x in Sp, A > 0. We then obtain the following theorem on asymptotic
series of powers.
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Let O <A, <A, <. If § (t)is in L(x,) for some x, and

A -1

éd~% a " to N terms as t -+ 0,

then
f~XI'A)a_x " toN terms, uniformly in arg x,

asx»minSA,A_\O.

Other notable examples of asymptotic sequences to which the general
tueorem applies are

(n - !
v =(1=e"t)r! _
4) N ( e’ ") ’ En x{x+ 1Dees{x+n-1)
-1
5) ¥, =(e'=1)"", . (n - 1!

=x(x-l)--- (x=-n+1)

n

© v,

<2 sinh -z-j""z _ (2n - 2)!
2 ’ En " ont DE-n+t2 mlzrn-1)

In the case of asymptotic power series or in the case of (4), N may be
finite or infinite, in the cases of (5) and (6) V must be finite.

The result obtained by integrations by parts is a particular case of
of the above theorem for asymptotic series of powers. If ¢ () is N times
continucusly differentiable for 0 < ¢ < a, then it can be proved by the
mean value theorem of differential calculus that ¢(t) ~ X qS(")(O) t"/n!
to N terms as t » 0, and then (2) follows from the theorer on asymptotic
power series.

In many cases it is possible to extend the region of validity of the
asymptotic expansion to an Sy with A< 0. If ¢ (¢) is an analytic function
of ¢ which is regular in S, and is O (e **) for some constant a, as ¢ - o
in S, then it is permissible to rotate the path of integration in (1) to any
ray in S, and by this means f (x) may be continued analytically to some
region which contains the sector —7 + 6 < arg(x — a) < 7 - 0 [see, for
instance, Doetsch (1950, p. 362f1.)].l 1¢ | has suitable properties along
each ray, and ¢ ~ 2 a_y_ast-> 0in S, then f~2a g asx- e in
SAwhere A>0 - n/2. Ke shall formulate a precise theorem for asymptotic
series of powers.
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If $(¢) is a regular function of t in S,, ¢ = O(e™), uniformly in argt,
for some a, as t + = in S

-1
p~Za ¢" to N terms, uniformly in arg¢, ast >0 in §,,
where

O<A, <A, <o <Ay
then f(x) exists at least in the sector
-7+ 60<arg(x—a)<mr-06,
and
-A
f~Za TC(A)x ™ toN terms, uniformly in arg x,
asx » oo in Sp, A > 60— /2

The particular case of this result in which the A form an arithmetic
progression, and ¢ is represented by a convergent infinite. series

A -1
Za ¢t "

for sufficiently small |¢| in S, is known as Watson’s lemma; it is suffic-
ient for many applications.

Throughout this section we investigated the behavior of (1) for large x.
Similar methods may be used for the investigation of f(x) as x + x . For
the basic lemma see Erdélyi (1947), and for some of the most important
resuits see Doetsch (1950) Chapter 13 and Widder (1941) Chapter V.

2.3. Critical points

We have seen in the last two sections that under certain circum-
stances the asymptotic behavior of integrals is determined by the beha-
vior of the integrands at certain distinguished points, the end-points of
the interval in the cases considercd in the preceding sections. Such
distinguished points have been called critical points by van der Corput
(1948). There is no general theory of critical points but a few types of
such points, and the methods adapted to deal with them may be described
as follows.
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First let us consider an integral of the form
B =h (¢)
1) fa glt)e de,

where x is a large positive parameter and A (¢) is real. If A () Las a
maximum at ¢t = 7, and A(¢) <k (r) when ¢ # 7, then for large x, the modu-
lus of the integrand will have a sharp maximum at a point verv near 7, and
most of the contribution to the integral will arise from the immediate
vicinity of this maximum. The integral can be evaluated approximately by
expanding both g and 4 in the neighborhood of ¢ = . This is the central
idea of Laplace’s method (sec. 2.4). We have encountered such a case in
sec. 2.2 where h(t) = =t, 0 < t < o, and k (¢) has a maximum at ¢ = 0.
Accordingly, we evaluated Laplace integrals asymptotically by expand-
ing g (¢) for small values of ¢.

If x and 4 (t) are complex, and g (¢) and 4 (¢) are analytic functions of ¢,
then it is often possible to deform the path of integration so that -t
passes through one or several points at which A “(¢) = 0. If r is such a
point, it is a critical point; it is possible to determine that part of the
path of integration which passes through r in such a manner that
x [k () - h(7)] is real along the path, and the integral can then be evalu-
ated by an adaptation of Laplace’s method. This is Riemann’s method of
steepest descents (sec. 2.5).

Next let us turn to integrals of the form

(2) IB g(:)ei’“')dt

where we again assume that x is a large positive parameter, and k (¢)
is a-real function. In general, the rapid oscillations of explixk (¢)] will
tend to cancel large contributions to the integral, but this cancellation
will not occur at the end-points, or at the stationary points of k (¢). If
k (¢) has no stationary points in the interval a <t < (3, integration by
parts (sec. 2.1) will in general give a good approximation. Stokes’
method of stationary phase (sec. 2.9) appraises the contribution of a
stationary point, 7, to the integral by expanding g and A in the neighbor-
hood of this point.
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The method of stationary phase has been extended by van der Corput
(1936) to integrals of the form (1) where xk (¢) may be complex (instead
of being imaginary, as in the method of stationary phase). According
to van der Corput, the critical points in this case are those points, r,
at which x* B'{) [A"(t)]™% is real, while the imaginary part of this
function changes its sign when ¢ passes through r. (In the case of (2),
h =ik, k is real, and the only points at which

AR RYHE = xRk k" )E
is real are the stationary points of k.)

2.4. Laplace’s method
In the integra!

1) f@)=[ f gt e gy

let & (¢) be a real function of the real variable ¢, while g (¢) may be real
or complex, and let x be a large positive variable. According to Laplace,
the major contribution to the value of the integral arises from the immed-
iate vicinity of those points of the interval @ <.t < £ at which A (¢)
assumes its largest value. If & (¢) has a finite pumber of maxima, we may
break up the integral in a finite number of integrals so that in each
integral & (¢) reaches its maximum at one of the end-points and at no
other point. Accordingly, we shall assume that A-(¢) in (1) reaches its
maximum at ¢ = @, and that h(¢) <h(a) fora <t < 8.

Assuming g continuous and % twice continuously differentiable,
k' (a) =0, h" (a) <0, Laplace introduced a new variable u by the sub-
stitution h(a) — h(¢) = u% k' () will be negative in a < ¢t < a+ 5 for
some sufficiently small . As x + o,

a,+-r’ E 1 g(t)
f(x)"'fa g(t)e h(t)dt“/ 2umlexpx[h(a)-uz]l du
0

where U = [h(a) = h(a + 7)1* > 0. Since only the neighborhood of u =0
matters, we may replace g(t) approximately by g(a), and u/k “(¢) by
- [=2h"(a)]™¥, which is the limit of u/k’(¢) as ¢+ @, and obtain

-2 % 0
f(x) ~ [h” (a)] g(a) fo texpl—=xu? + xh (a)}} du
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By the same argument, we may extend the integration to u = e and finally
obtain Laplace’s result

- %
v xh () 7 .
(2) f(x)~gla)e l AT .(a) l . ]

Later, Burkhardt (1914) and Perron (1917) showed that the same resnlt
can be proved by expanding g and & in the neighborhood of a. Copson
(1946) reproduces a simple proof of Pdlya and Szegs, and Widder (1941,
Chapter VII) gives a more sophisticated proof under more general con-
ditions. Further extensions of Laplace’s formula were obtained by Hsu
(1949 a, b; 1951 a, b), Levi (1946) and Rooney (1953). Laplace’s method
has been applied to integrals depending on two large variables by Fulks
(1951) and Thomsen (1954), and to double and multiple integrals by lisu
(1948 a, b; 1951 c) and Rooney (1953).

The following extension of Laplace’s result will be derived from our
discussion of Laplace integrals. Let g and h be functions on the interval
(a, B) for which the integral (1) exists for each sufficiently large positive
x, let h be real, continuous at t = a, continuously differentiable for
a<t<a+1n,1>0, and such that ' <O fora<t<a+n, ht)<h(a)~¢
€ >0, for a+ n <t < B;suppose that h' (t) ~ —a(t — a)*"' and g(z) ~
b(t—a)}‘—' ast->a A>0, v>0: then

N\

b v shia

(3) f(x) = fﬁg(l) exh(t)dt o r(i)( v >)/ exh( )
@ v 1 % ax

We first note that
1) 1J° g@)e?@War] < explxlhia) ~BSE |g0)] dr
a+7’ a-‘--r’
=o[x->‘/”e’h(a)] X o o0,

In the interval (a, a + 1) we introduce a new variable u = h(a) - k(¢),
set U =h(a)=h(o+7)>0, k(u) = —g(¢)/h’ (t) and obtain

a+t

(5) fa 7 g(t) e*h (')dt = exh(a)fou k(u) e ™ du.

T N MY PR
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Now,
u=hl@)=h(e)=~ [ h (D dr~=(t - a)” ast-a
v
and hence
Ty Vv
t—a~ as u -» O.
a
Also,
g(t) b Ny
- ~ (¢t — -
0 - (¢ —a) as t-> a
so that

b uv A=
6 k(w)y~— | — asu -0,
a a

By the results of the preceding section on the asymptotic behavior of
Laplace integrals it follows from (5) and (6) that

a b Vv
@ [ +7Ig(t)e""(‘)alt'» = <:-> r(i) MY gwh@)
@ v a v

as x -» oo,

and (4) and (7) prove (3). Moreover, both (4) and (7), and hence also (3),
remain true if x is a complex variable and x » e in S5, A > 0.

A further extension of (3) leads to an asymptotic expansion of f(x).
In the following formulasrn =0, 1, ... , N - L If

® -k~ Za -, g~ b -

to N terms as t » g, then there is an expansion
g (e)
h (¢)

~ 3¢ (t- a))\—"+" toN terms ast - a
n

9 -

and the ¢ may be computed by formal division. Also

a
(10) u=—ft h(rydr~ 2 R (t-a)’*" toNtermsast- a
a

v+n
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Fromthis last expansion it may be shown that ¢t - a possesses anasymptotic
power series expansion in powers of u '/, this asymptotic power series
may be substituted .in (9), and leads to an asymptotic expansion of the
form

ay k@)~ Ey”uo‘+"-”)/" toN terms as u » oo .

With (11) instead of (6), an asymptotic expansion to N terms is
obtained for (5); (4) may be strengthened to o (x—0\+lv Vv gxh@). and
we have

(12) fx)~e**@) y. F<A+ ke ) = A#n)/v
v

to N terms as x » o in Sp, A > 0, The coefficients y_ ma; be computed by
formal substitution according to tl. : scheme described above.

There is an alternative procedure for the computation of the y_which
avoids the necessity for inverting the asymptotic series (10) to obtain
the expansion of ¢ -- a in powers of u /¥, From (10),

a
ht)=h(@)~ -2 (t-a)’+h, ()
1 %4

where
N=-1 a .
B,()=- Z e a)’* "+ o((t - VN,
v+n
n=1
We now write
+ a+7
j_aa "7g (t) ez;.'l (t)dt = e!h (a-)-[l Il(t) exp [_i x(t - a)v] dt,
v
expand

1(t) = g(e) explxh ,.(1)]

formally in powers of (¢ — a), and integrate term-by-term to obtain (12).
It is also possible to construct a proof of (12) along these lines.

2.5. The method of steepest descents

We again consider the integral

1) f&)=[Pg)e™ds,
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in which we now assume x to be a large complex variable, g and 4 to be
acalytic functions of the complex variable ¢, and the integral to be taken
along some path in the complex ¢ plane. This integral may be evaluated
asymptotically by the method of steepest descents, which was originated
by Riemann and developed by Debye. Copson (1946) gives a detailed
description of this method together with references and several examples.

Those points of the ¢ plane at which £ “(¢)= O will be called saddle
points or cols. The surface representing |exp[xk (¢)]] as a function of
Re ¢ and Im ¢ will be called the relief of e*": on this surface cols will
be ‘‘caddles’’, and the most convenient trail from one ‘‘valley’’ to the
other will lead over one or several saddles. Let r be a col: if £(s) =
R (£) = co=h @ Np) =C and 2 =" () £ 0, we call r a col(or saddle point)
of order m. In the t-plane, curves along which Re xk (¢) is constant are
called level curves: along such curves e*! has a constant modulus {they
are contour lines of the relief), and the phase of e * changes as rapidly
as possible. Those curves along which Im xk (¢) is constant are called
steepest paths : along such curves e has a constant phase, and the
modulus of e ** changes as rapidly as possible (they are gradient lines
of the relief). At a col, r, of order m, m + 1 level curves intersect at
equal angles, and their angles are bisected by m + 1 steepest paths:
along each of the latter curves |e™ (¢ has a stationary point at r.

The method of steepest descents consists in deforming the path of
integration so as to make it coincide as far as possible with arcs of
steepest paths. If a and B lie on steepest arcs through cols, for instance
if @ and B are singularities of k (¢), then the path of integration may be
deformed so as to consist entirely of steepest paths through cols; other-
wise two steepest arcs may occur whkich do not pass through cols. This
latter case may be described by reference to the relief by saying that
we firsi descend along a gradient line to a singularity and them climb the
saddle along another gradient line. In any event, Re xk (¢) is monotonic
along any steepest path (except at saddles), and Laplace’s method may
be used to evaluate the integral asymptotically. The asymptotic expan-
sions of g and h needed for the application of the theorem in the pre-
ceding section are the Taylor expansions of g and k around that point of
the steepest path at which Re xk (¢) is a maximum (this is often the col).
The inversion of the series 2.4(10) may be effected by Lagrange’s
expansion (see, for instance, Copson (1935), p- 123-125).
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Meijer (1933 a,b) has skown thai pumerical bounds for the error term
may be obtained by using Lagrange’s expansion with a remainder, and
he has also shown that in some cases recurrence relations for the coef-
ficients may also be obtained.

We shall consider several examples of the application of the method
of steepest descents: these are taken from Copson (1946).

2.6. Airy’s integral :
We shall investigate the asymptotic behavior of

1 = 1
(1) Ai(z)=—/ cos(—s’+zs>ds
I ° 3

for large positive values of z. With

(2) s=z"%¢, x=2z¥2

we obtain

173 o 1
(3) Ai(x¥3)= / exp|ix|— ¢ +¢ de,
27 = 3

and the method of steepest descents can be applied to the integral in
(3). In (3), t may be envisaged as a complex variable of integration. The
path of integration (for x > 0) is the real ¢ axis, but it can be deformed
into any curve which begins at infinity in the sector 27/3 < argt < m
and ends at infinity in the sector O < arg ¢ < n/3. Here

h(t)=i<% t’+z>, RoeY=i(e2+ 1),

and the cols are the zeros of & “(¢), i.e., the points ¢t = 1i. The steep=st
paths are determined by Im A (¢)=const. Ve set t = £ + in and obtain

1 .
Imh(t)=§ ¢-3_6”2+ f, Imh(ii)= 0,

so that the equation of the steepest paths is

(4) & - 332 + 3)=0.
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This equation represents a degenerate cubic consisting of the imaginary
axis and of the twa branches of a hyperbola. In the figure, arrows indicate
the direction in which Re 4 (¢) decreases. The asymptotes of the hyper-
bola are the lines £ * /3 = O, and clearly, the path of integration in
(3) can be deformed into the upper branch of the hyperbola, and runs from
o » exp(57i/6) to oo « exp (i #/6). With this path, the integral in (3) can be
seen to be convergent whenever Re x > O,
We now write

oo * o0 ¢ (si
(5) 2mx~ V2 A4i(x¥?)= f spilinled _f. ep (5 in/6) e*h(t) 4,
3

= II - Iz
and evaluate II , by Laplace’s method. In both integrals, h(t) - 4 (i) is

real and reaches its maximum at ¢t = i; alsoh(¢) — h(i) is a decreasing
function. We introduce a new variable u by

2 1
(6) . u=h(i)—h(z)=—§—i<%t’+l:> =(t-i)z-?i(z—i)3.
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From (6)
1 ¥
(7) tu¥=(-i) [1—;i(t~i)] ’
%

where u* is the positive square root, [ ++». 1% is that value which reduces
to 1ate¢ =i, and the opper sign in (7) kolds for I,, the lower sign for I,.
It follows from Lagrange’s theorem that sufficiently near to the col
t—ipossesses an expansxon of the form¢t —i =3 b (% u*)" where nb is
the coefficient of (¢ — i)"”' iu the expansion of [1 - i(e - i)y3)™
powers of ¢t — i. In this rianner the expansions

o Q i'r@Gr/2 -1 o
® ¢-i= ) AT/ e )

n=
are obtained where the upper or lower sign holds in I, and I, respec-
tively. Now

. oo dt
—zh (i) -xu
e I|’2=_f0 e = du,

and according to sec. 2.4 the asymptotic expansinns of I, , are obtained
by substituting (8) in d¢/du and then integrating term-by-term. Thus

o0

o (ED"i"'I'(3n/2-1)
2x/3 _ -zu n/2 =1
" ‘fo = 2 2G-DITG /D

n= 1

i (t1)" " T @n/2- 1)
n=1 2(n - 1)13"" 1 ,n/2

Substituting this in (5) and expressing the result in terms of z, we obtain
after some simplification

. 1 2 F(3m+'/2 a/2v—n
&) e 27z exp(—-é— 2 zo (2m)! (= 92¥57,

and this asymptotic representation holds, uniformly in arg z, as z » o in
larg z| < n/3-A, A>0.
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2.7. Further exanples

We shall now consider two examples where the limits of integration
are not singularities, and accordingly, the asymptotic expansions are not
obtained by expansions around the col. Also, in the second example, the
col is of order two.

First let x > 0 and

(1) flx)= fomexp I'ix<l e+ t) ] dt.

The function 4 (¢) occurring here is the same as in sec. 2.6, the steepest
paths are those shown id the figure in sec. 2.6, and it is easily seen
that the appropriate path of integration consists of that portion of the
imaginary axis from O to ¢ and then one-half of the upper branch of the
hyperbola. Thus,

(2) f(x)=f°i+ f:,o . exP(iﬂ/s)ezh(t)dt’

The asymptotic expansion of the second integral has already been
obtained. In the first integral & (¢) is real and decreasing as ¢ runs from
0 to i{, and we may again use Laplace’s method. Accordingly, we set

1
u=hO0)=h(t)=-it (1 +? t’)

and infer from Lagrange’s theorem that —it = £ 6 " where nb_ is the
coefficient of (~it)"~' in the expansion of (1 + ¢?/3)™ in powers of —it.
Clearly b =0 if n is even and

. f @Bm)lu2*
= ml(3m 1)1 3%

a=0
Substituting this in the first integral in (2) and integrating term-by-term,

@Bm)lu®®

S, mi(2m)! 3"

. % (3m)! -2a -1
: z m!3:— *

P xh(t) _ - 2/3 -
j;e dt—tfo e ™

a=0
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It is seen from sec. 2.6 that the second integral in (2) is exponentially
small in comparison with the first one, and hence the result

= 1 T (3m)!
(3) [ exp|ix|—¢3+: de~i z i x"=
° 3 oo m! 3"

as x » oo inSA, A>0,
Cur last example is the integral

4) fx)= fo‘ exp (ixt 3 de

where we take x > 0. Here hA(t) = it and t = O is a col of order two. The
steepest paths through the col arc the lines Im (it 3) = 0, that is the lines
argt = *n/6, /2, +57/6. In the figure, arrows indicate the direction
of decreasing |exp (ixt®)| for x > 0. None of these steepest paths passes
through ¢ = 1. With ¢ = £+ i 7y, the equation of the steepest path through
t=1is Im@t®) =1, or £2 ~ 3 &n? = 1. This is a cubic, and the brauch
of this cubic passing through t = 1 is also indicated in the figure. In
order to get from O to 1 along steepest paths, we first integrate from O

to « along the line arg t = /6, and then from  to 1 along the upper half
of the branch of our cubic. Accordingly, we set
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oos exp (M i/6) ocos exp (mi/6)
—J

5) fQx)= ],

exp (ixt 3)dt

=I,-1,
In I, we set u = ~it®> or t = u'/® e"*/® where u'® > 0, and obtain
1

6) I, = e'7/® fome_‘" u"¥du = ['(4/3) e/ 8 x~V3,

InI,, we setu = —i(t®*=1) ort =(1 + iu)'? and obtain

)
I =i J, e® ™™ (L+ )™ du.

E xpanding (1 + iu)"%?

in the binomial expansion,

1 . o= .
(7 Iz C-1/3) e nzo C'(n + 2/3) (ix) .

and substituting (6) and (7) in (5) we finally have

(8 J explixe de ~[(4/3) 7/ 7178

1 o= R
- Y e nz'o I'(n + 2/3) (ix)

as x » 0o in Sp, A >0, g

The last equation describes the asymptotic behavior of f(x) as x »
in the right half-plane. If x + * {, the integrand in (4) is real, and
Laplace’s method may be applied, and if x is in the left half-plane, we
may use the relation

f@) = fCx)

which follows from (4) and in which bars denote complex conjugation.

2.8. Fowrier integrals
Integrals of the form

1) ff et p(e) de




e
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are called Fourier integrals. We shall always assume that (a, B) is a real
interval, and mostly (a, B) will be a finite real interval; and ¢ (¢) will be
anintegrable function so that (1)exists for all real z. We shall investigate
the asymptotic behavior of (1) as x + +; to obtain the asymptotic be-
havior as x » ~eo, replace ¢t by —¢. Unlike in the case of Laplace integrals
(sec. 2.2) it seems that repeated integrations by parts is the only effec-
tive method for obtaining asymptotic expansions of (1), except in the
case of analytic ¢(¢) when the method of steepast descents may be used.
First we shall prove: If ¢(t) is N times continuously differentiable
for a<t < B then

(@ [Pe ) din B, (x)-4,x)+o™) 45 % = o,

where

(3) Alb‘l(x)='Nii i) ¢(n)(a)x-n—lleiza

n=0

BN(Z)= Ng' in! ¢ (n)(B) xR ixB

n=20

and ¢ ) d"¢/dt". The result remains true when a = —oo (or 8 = o) pro-
vided that ¢(")(t)- Oas t-+—oo (Or t »00) for eachn=0,1,...,N-1,

and provided further that & ¥ Xt) is integrable over (a, B). To prove (2),
we apply 2.1(5) with g = ¢, g, = 6®) h=eit h_, =@Gx)"e =t For the

remainder we obtain
- \=N (B _ixt )
R, =(-ix) fa et W) dt

and this is o(x™¥) since the integral approaches zero, as x + «, by
Riemann’s lemma.

We note that 4, (x) = 0 if ¢ and its first N — 1 derivatives vanishata
(for instance, if ¢ vanishes identically in some neighborhood of a), and
also that BN(x) = 0 if ¢ and its first N — 1 derivatives vanish at 8 (for
instance, if ¢ vanishes in some neighborhood of B).

We now turn to Fourier integrals whose integrands have singularities
of a simple type at one end point of the interval.




-
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I (e)is Ntimes continuously differentiable for a <t < B; ¢ ™(B) =0
forn=0,1 ...,N-1;and 0 < A<1; then

(4) faﬂei"(t-a))\-' 103 dt=—AN(x)+0(x-”) as x » oo,
where

r C(r+A)
(5) 4, = Z 2L emilntA-2)/2 ¢(")(a)x-"-)‘ei’a.

!
=fo n!

If ¢(t)is N times continuously differentiable for a <t < fR; ¢(" Na)=0
forn=0,1, ..., N~1;and O < u<1; then

(6) faB e " (B —t)*"' $(e)dt =B, (x)+ O(xN) as % - oo,
where
S T+ .
(M Byl)= Y —bn emitmu)z g (g) gonu g B,
n!

n=0

With A = 1, (5) becomes the firsi equation (3), and with u = 1, (7)
becomes the second equation (3), but the O terms in (4) and (6) give less
information than the o term in (2). Instead of O (x™¥) we could write
o(x™" M"Y in (4), and 0 (™Y "#*") in (6), and these latter forms remain
valid, and pertinent, when A = 1 or yr = 1 respectively.

We shall prove (4): the proof of (6) is similar. In (4) we apply 2.1(5)
with g(¢) = $(¢), g, () = ™), h(&) = k() = e ** (¢ = a)*™', and

(_ 1)n+1

n:

® h_,_,@) = [ =0 =™ e du

n=0,1,..,N-1L

In (8) we assume ¢t > a, and take a path of integration which lies entirely

in the quadrant O < arg(u — a) < 7/2 The integral converges absolutely,
and

— h__ @O =h_ () n=0,1,..,N-1
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If we take the ray u = t s io, o > 0, as the path of integration, we have
lu —a|>t~a, |u—a| 'Y<~ a) 'for0</\51 and hence

PRV, C 3 . )
(t)l < Lt_n‘:_)__ f:**: I" _,tln Ie ixu dul

L
Substituting u = ¢t + { 0 we have

©) |ho,_, @] <(t-a)"x™ t>a, x>0,

Also, from (8),

nt+1t
(a)—-( D

faaﬁm(u - a)" AT g gy

-n-

n!

and, withu=a+io, 020,

T(n+A)

n!

(10) A (@)= (-D"*! emin*)/2  =n=A ixa L0 ..

=n=1

We can now apply 2.1(5). The contributions of B8 to the s vanish since
g{)(")(B) = 0. From (10) it follows that & s ==—A4Ay, where A is given by
(5). Moreover, from 2.1(7),

B
- N W)
Ry=GD fa &) h_y () de,
and by (9),
R <2 [P 1g®0] ¢ - ' de = 0G7H).

This proves (4).

Lastly we turn to Fourier integrals whose integrands have singular-
ities at both ends of the interval.

I ¢(t) is N times continuously differentiable for a <t < B, and
0<A<LlO0<pu<],then

(11) JPe ™t —a (B0 ple)de = B, (x) = 4 \(x) + O=™N)

as X - oo,




- e -
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where

N—1
r + A § ] dn
12) AN(x)= z (n —)e‘”l(ﬂ"’)\-2 )2 x-u-)\ e X0

== n! da"

[(B-a)*""'é(a)]

N—=1 r( ) o - ) dn
BN(x)= z _n’:-'_# eTiln #)/2 o =n ueuﬁ.d_é_n_[(ﬁ_a))\-l¢(‘8)],

n=0
and G (x ™) in (11) may be replaced by o(x™¥)if A=p= 1.

This theorem contains the three previous results as special cases. To
prove (11), we shall use a device which is frequently employed for such
purposes, and is called a neutralizer by van der Corput. Let v{(t) be an
infinitely differentiable function for @ <t < B, v(a) = i, v(a) = 0,
n=1, 2, ... ; v(")(B) =0,n=0, 1, 2, .... An example of such a function

is
8 1 1
I: exp(—u_a—ﬁ_u>du
1 1
fBexp(— - >Ju
a u—-a fB-u

With such a neutralizer v(¢) we write

(13) ff e ¥t — @) (B-0)*"" &) de

“ [P et - N ) (B - 0FT S ()] de
s [P e = (B L - L] ¢ - T B () de.

The first integral on the right hand side is of the form (4), with & (¢)
replaced by [ +.- ]: since all derivatives of this function vanish at ¢ = f3,
and are equal to the corresponding derivatives of (8 — £)“™' ¢(¢Yatt = q,
we obtain the expression (12) for AN(x). Similarly, the second integral
on the right-hand side of (13) is of the form (G), with ¢ (¢) replaced by
{ «es }; all derivatives of | ..c..} vanish at ¢t = a, and are equal to the
corresponding derivatives of (¢ — ayN! ¢(t) at ¢ = B; and the expression
(12) for BN(x) follows from (7). This proves (11). If A = p = 1, then (2)
shows that O (x “¥) may be replaced by o (x7¥).

[} -—
ey ”w.’.nw"
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All our results remain tree if i is replaced by —i throughout the form-
ulas, and in (8) the integration from ¢ to — i o is taken over a path which
lies in the quadrant — n/2 < arg(u — a) < 0. Thus we are able todescribe
the behavior of our integrals as x + — «, and also the asymptotic behavior
of Fourier integrals with trigonometric kernels cos xt and sin xt.

2.9. The method of stationary phase

We now consider the intepral

M @=L @) e

in which x is a large positive variable and 4 (t) is a real function of the
real variable ¢. According to Stokes and Kelvin, the major contribution
to the value of the integral arises from the immediate vicinity of the end
points of the interval and from the vicinity of those points at which 4 (¢)
is stationary, i.e., h “(t)= 0; and in the first approximation the contri-
bution of stationary points, if there are any, is more important then the
contribution of the end points.

Suppose that g is continuous and % is twice continuously differentiable,
let 7 be the only stationary point of b, a < 7 < B, A'(r) =0and 2“(r) > 0.
In the assumption that the neighborhood of r will give the principal con-
tribution to the integral, we introduce a new variable of integration u by
the substitution 4 (¢) = £ (7) = u? and obtain

o [F4 ixh (2) g, _ 2 gl
f(x) f_r_e g(t? e de / 2uh'(t)

_u‘

explix[h (9 + u?1} du

where u, = [h(r —€) ~ h(DN1%, u, =[h(r+ ) - h()1%. Since only the
neighborhood of u = 0 matters, we may replace g (¢) by g(s) and 2u/h’ (¢)
by [2/h “(r))%* which is the limit of 2u/k’ (t) as ¢t > 1, so that

%
f(x) ~ [—2—-] g(n fuz explixu? + ixh (] du -
h"(r) Tuy

By the same argument we may extend the integration from — e to « and
finally obtain

27 J .
2 fx)~ [ ”—] g (r) explixh (r) + i m/4] as x -» o,
xh " (1)

g B a8
o
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which is virtually Kelvin’s result. The contribution of the point of sta-
tionary phase, 7, to the integral is more important than the contributions
of the end points because the latter can be shown, by integration by
parts, to be O (x™") if ' (a) #:0, &' (B) £O.

The principle: of stationary phase has been applied to numerous
mathematical and physical problems but it appears to be difficult to
formulate it in a precise manner. Perhaps the best available theorem is
one given by Watson (1920). Poincare discussed the principle of station-
ary nhase applied to integrals involving analytic functions, and the
connc ‘ion of his work with the method of steepest descents is indicated
in Copson (1946). The method of stationary phase has also been dis-
cussed by Bijl (1937), and in a much more general setting by van der
Corput (1934, 1936).

We' shall use the discussion of Fourier integrals given in the pre-
ceding section to derive a theorem which may be regarded as a precise
version, and at the same time generalization, of (2). A point r at which
R =h"(r = vonmh ® Xr) = 0 and £ = *"{) £ O will be called a station-
ary point of order my, m = 1, 2, ... . In the neighborhood of such a point
hi(e) = (¢ = D" k@), where k (1) #£ 0. The notion of a stationary point
may be generalized to fractional order. A point r will be called a station-
ary point of (fractional) order p if in some neighborhood of that point
k'(t)is eitherof the form |t — 7|“ h (¢) or of the formsgn(e —:7) e ~7|“h (¢),
where h (7) # O. Assuming that % (¢) has at most a finite number of sta-
‘tionary points (of positive order) in the interval under consideration, we
may break up the integral in a finite number of integrals in each of which
h (t) is monotonic; and we may assume k (¢) to be increasing. Thus, we
shall consider integrals of the form (1) in which 4 () is strictly increas-
ing when a <t < B, and a and B are either ordinary points (i.e., station-
ary points of order zero), or stationary points (of positive order).

IfO <X\ p<1;g(t)is N times continuously differentiable for a<t<f8;
h (¢) is differentiable and

(3) A'@=C-a)""(B-0""h O,

where p, ¢ > 1, and k (¢) is positive and N times continuously differen-
tiable for a <t < 3; then

@ [7 g0 e Ot (Boep T de=Bx) - A)

. P A = T
T R T P




(8) B(x)= fa
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where

(5) A(x)’vA”(x) and B(x)"'B”(x) to N terms as x - oo,

and AN(x) and B, (x) are given by (17) and (20) below.
In the proof of’this theorem we shall use the abbreviation

6) g,(e)=g() ¢ - (B- )47,

and shall employ a neutralizer v(t), which is infinitely differentiable for
a <.t < B and such that for some 7, 0 < 5 < (B-a)/2, v(t) =1 when
alt<a+ 7, and v(¢t) = 0 when B8 -7 <t < B. We then set

M 4@ =) g, e O

A SO PROPEFA
To obtain an asymptotic expansion of 4 (x), we introduce a new vari-
able of integration, u, in (7) by

9) uf=h(t)- h(a), uf= h(B -7n)=+h(a)
From (3) we have

uP=h(t)-h(a)= [ h'(s)ds

=(z—a)pfo' yP ' [B-a=(t-a)yl® " hla+(t-a)yldy

where s = a + (¢t — a)y. The last integral is an N + 1 times continuously
differentiable, positive, and increasing function of ¢, so that (9) repre-
sents an N + 1 times continuously differentiable mapping of the interval
a <t < B —n onto the interval 0 < u < u,, and the inverse mapping is
also N + 1 times continuously differentiable.

We now put v, (u) = v(¢) and

d
10) k() =g, @ u' 2,
du
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where g,(t) is given by (6), and & (u) is N times contmuously differen-
tiable for 0 <u <z ,. Then

A(x)=—e i‘h(a)fou' v, W)k @) u)\-' exp (ixu”) du

can be integrated by parts V¥ times, differentiating v,k and integrating the
remaining factor of the integrand. With

(_ 1)n+l
n!

11 ¢_n-' (u) = f:’ (z —u)" z)‘.| exp (ixz”) dz

the result of the integrations by parts is

A(x) =4, () + R, (&),

where
(12) 4 ()= Ngl D" ECN0) ¢_ _, (0) e =h(@)

and

ixh (@ u dN(V k)
(13) Ry (x) = S )fo "y (@) du|N du.

In (11), the path of integration is the ray arg(z —:u) = 7n/(2p) in the
complex plane. Clearly,

14) b_ _(0)= )n-H <,+ A) rrl.(n + A)] <~ \)/p

l)\-| Su}\-l

To estimate b (z) for u > 0, we note that |z and also that

& zi \°~!
ixzp+x|z-u|p=ipr + |z —u| exp — dé&.
2p
0

Since the real part of the last expression is certainly negative, we have

| exp (ixzf)| < expl~x |z — u|”)

L] - —— -
N P hem PP o %
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and hence
A=1

1s) |¢_,, (@) <. —
n!

< ___l__r n+1 u)\-i x‘(n*l)/P.
n! P

Alternatively, the method of steepest descents may be applied to (11) to
show that

"1z = u|" expl—x z-u|lP)dlz —u
g P

16) ¢, _, () =u" O[Gur) """

for large xu”.
Substituting (14) and (15) in (12) and (13) we obtain

=1 )
(17) An(x)= 2 k (0) <1+ A) exp [M '(n+>\)/p ixh (@)
n=0 2P
N
IR (=) < <_> -N/p/ A= d (v k)

This proves that 4 ~ A, to N terms when X <1. When A=1landp=1
the same result follows from sec. 2.8. Let A =1 and p > 1 and choose 8
so that

()L

Since (16) gives ¢_, (u) = O (x™¥) uniformly in u when u > 5, we have for
sufficiently large x

dN(v k)

)
N du < ze.

du

dN(v1 k)

N du < Y%e
u

NP (o)

so that R, = o(x"¥/P) also in this case. This proves the result for 4.

o S "L".'—-—a..’ ;S
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A similar result holds for 8 (x). In (8) we introduce a new variable of
integration by

(18) v7=h(B) - A (e)

and put

(19) I(v) =g, () '™ ZL.

v

where g, (¢) is given by (6). In the repeated integrals of v*~' exp (—ixv7)
we integrate along the ray arg(z — v) = ~=7i/(20), and obtain by a process
very similar to that used in the case of 4 that B ~ B, to N terms where

o' g :
(20) B, ()=~ z 1™(0) F["+#]exp [.“_’”2(#&2]
a o

a=o nlo

« x~(ntu)/o  ish (B)

We conclude this section by applying the general result to
fx) = J: exp (ixt ?) de.
Here A=p=1 p=3,0=L u=¢, k(u)=1 and
A, (x)=1/3T(V/3)e™ /¢ x7'73

by (17) AISO‘U- 1—:3 t=(l—v)'/3,
) . m—d 1-9v)"%3,
(v) = " 1 -v)
and

N=1
Cr+2/3) .
BN(x)=- n=°w(lz) e

so that

flx) ~T(4/3) e™i/¢ x™1/3 _ N M_

-1/3)

M

(ix) ™" 'ek as x -+ oo,

which is the expansion obtained in sec. 2.7 by the method of steepest
descents. Note that x + = through positive values with our present r‘ethod
while x could be complex in sec. 2.7.
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CHAPTER I
SINGULARITIES OF DIFFERENTIAL EQUATIONS

In this chapter we give a brief introduction to the asymptotic theory of
ordinary homogeneous linear differential equations of the second order.
Analogous theories exist for equations of arbitrary (finite) order and for
systems of differential equations of the first order. For these more
general theories see Ince (1927, especially p. 169f., p. 4281., p. 444 ff.,
p- 484 fi.),Kamke (1944,especially, p. 17 ., p. 60 ff., p. 100ff., p. 133 ff.),
Wasow (1953), the references giver in these works, and the references
given at the end of the present chapter. Asymptotic expansions occur
also in connection with non-linear differential equations, and partial
differential equations.

We shall investigate the asymptotic behavior of solutions of

4

y"+p@)y’ +9&)y=0

as x > x_. Here x is either a real variable ranging over an interval (of
which x is usually an end-point), or else a complex variable ranging
over a region (of which x is often a boundary point). Without loss of
generality, we take x = co throughout this chapter.

The reader is expected to know the basic existence theorems regard-
ing the above differential equation both for real and complex variables,
and he is also expected to be familiar with the fundamental properties of
the solutions.

3.1. Classification of singularities
In the present section we shall discuss the differential equation
(D) y"+p@E)y" +q&x)y=0

when x is a complex variable ranging over an annular region, R, given by
r < |x| < e, and p (x) and q (x) are single-valued analytic functions in R
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3.1 SINGULARITIES OF DIFFERENTIAL EQUATIONS 59

(which may or may not have singularities at «). We shall briefly review
the well-known classi(ication (see, for instance, Poole, 1936, Chapter
IV) of isolated singularities of (1), the singularity in question being at eo.

Ky, &) and y, (x) are two linearly independent solutions of (1) form-
ing a fundamental system, and if we continue these functions analytically
along some curve in R which begins and ends at x and encircles o in the
positive sense, we obtain two new functions which may be denoted by

(xe &y j =1, 2. These need not be identical with the Y; (x), but at
any rate, they will be solutions of (1), so that relations of the form

Y, ke =a, ¥, (x)+a, ¥,
(2)
y,(xe”" N=a, ¥y, (x)+a,y,x)

will hold. In (2),

[a” 252 ]

A=

G %2

is a constant non-singular matrix.

If instead of y,, y, we take another fundamental system, we obtain a
matrix B, and an easy computation shows that B = MAM™', whecre M is a
non-singular constant matrix. Thus, all matrices obtained in this manner
have the same affine invariants, in particular, the same latent roots, and
the same canonicai forms. These, then, are independent cf the fundamen-
tal system chosen, and are characteristic of the singularity at e (if there
is a singularity there).

Let us assume that the latent roots of A are distinct so thatwe have a

diagonal canonical form

Ify,, y, is the fundamental system corresponding to the canonical form
of A (canonical fundamental system), then (2) assumes the form

(3) y,xe™*") = Ay (x) i=1 2

M“‘"’w-—
o ,
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We now set A= exp(2rrzp ), and call p |, P2 the exponents belonging to
: these are determined up to an integer in each. From (3) we see that
the canonical fundamental system is of the form

@ y =z Ty ) i = 1,2

where ¢, ¢, are single-valued analytic functions of x in R with, possibly,
singularities at o,

If the latent roots are equal, A, = A, = A = exp (2 i p), then the canon-
ical fundamental system can be shown to be of the form

7, () =x"P ¢ (x)

(5)
y,(x)=cy, () logx + 277 ¢, (x),

where ¢, and ¢, have the same properties as in (4), and ¢ is a constant:
¢ = 0 or ¢ #0 according as the canonical form of 4 in this case is dia-
gonal or not.

x = = is called an ordinary point of (1) if all solutions are regular at
o0, i.e., can be represented by convergent power series in x~'; x = o is
called a regular singularity of (1) if it is not an ordinary point and if
Y, and ¢, have at most poles at = so that by a suitable choice of p,
and p,, ¢, and iy, can be made regular at «; and x = = is called an
irregular smg.danty of (1) if at least one of the two functions ¢, ¢, has
an essential singularity at oo,

It can be shown (see, for instance, Poole, 1936, section 20) that a
sufficient condition for x = « to be an ordinary point is

(6) p(x) £ 2:\:-‘ + O(x—z), q(x) = O(x-‘) as x » oo,
and that a sufficient condition for x = o to be a regular singularity is
(1) px)=0(&"", g(x)=0(x"%) as x » oo,

In the case of an irregular singularity, p and g may have essential singu-
larities at oo: if p and ¢ have at most poles at o, we speak of an irregular
singularity- of finite rank, and the least integer k& for which

(8) px)=0@&*""), g(x)=0(x*"2) as x -+ o

is called the rank of the irregular singularity. Sometimes, a regular singu-
larity is regarded as a singularity of rank zero.
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3.2. Normal soluations

If x = = is an ordinary point of 3.1(1), we may expand y in a series
of powers of x~'. The coefficients of that series may be determined from
recurrence relations, and the series converges in R. If x = = is a regular
singularity of 3,1(1), we may set

y= io cnx_p-", c. . #£0.

n=0 Y

We then obtain a quadratic eruation for p, recurrence relations for the ¢
(similar to (7) below), and a series for y which converges in R. In either
of these two cases the coefficients can be computed easily, and the con-
vergent series can be used with advantage to compute the solutions for
large x.

The situation is entirely different if x = « is an irregular singular
point. Since the ¢jhave essential singularities at oo, we must set in this
case

o0 -— ) —
y= X ¢ x N

For the ¢ _ we obtain an infinite system of linear equations which cannot
be solved recurrently, andfor p, a transcendental equation which invoives
an infinite determinant (the determinant of the system). in this case the
coefficients cannot be computed easily, nor is the series rapidly con-
vergent for large x.

It was discovered by Thomé that in the case of an irregular singularity
of finite rank certain formal solutions exist which do not suffer from the
disadvantages mentioned above; the coefficients occurring in these
solutions can be computed recurrently, and the series appear suitable for
numerical computations for large x. Thomé’s solutions are of the form

y = exp [P (x)] 3 e x 7, c, 0,

n=0

where P (x) is a polynomial: they are known as normal solutions.
We shall explain the construction of normal solutions inthe case of an
irregular singularity of rank one. We first note that setting

y=zexplY% [ pdx)

— S
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in 3.1(1), we obtain for z a differential equaticn of the form (1) in which
z “does not occur. Hence it will be sufficient to discuss the differential
equation

1) y"+qx)y=0

in which
(2) qlx)= 1200 q,% "

the series being convergentin R. We shall attemptto find formal solutions

of the form

@) y=e® E ¢ xPT", ¢, £0,
n o]}

n=20

where » and p are constants. it is to be noted that p in (3) is not nec-
essarily one of the exponents belonging (in the sense of the analytical
theory of sec. 3.1) to the irregular singularity x = oo,

In manipulating the formal series, we shall adopt the convention
9.,=0,c_,=0,m=1, 2, ..., so that all summations may be extended
from — s to + 00 except those explicitly stated otherwise.

Substituting (2) and (3) in (1), we have

w?Sc xP"-2wZ(p+n)c, xP7"!

+Z(p+n)p+n+ De P " 245 q x"Tec xP"=0,
Comparing coefficients here, we obtain

(4) o?c -2wlp+n-Dc _, +(p+n- 2(p+n-Dec_

-1 -2

for all integers n. The first non-vacuous condition arises when » = 0 in
(4). Since ¢  # O we have

(5) w?*+q,=0.

=il o g B e 8 "
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Ifn=1 in (4), and @ satisfies (5), we obtain
6) -2wp+gq,=0.

These two equations determine w and p. The recurrence relation for the
coefficients may also be obtained from (4). We replace n by n + 1, and
use (5) and (6) to obtain

D 2wncn=(p+n)(p+n—1)c_ +v§zqv AP n=1 2 ....

We now see that normal solutions exist if either 9, £0, or 9,=9,=0.
In the former case, (5) determines w, (6) determines p, and with €y = 1,
(7} determines the coefficients. Moreover, w, p, ¢,y «.. , € are com-
pletely determined by ¢, ¢,, ... , ¢9_,,, and vice versa. There are in
this case always two normal soluhons corresponding to the two possible
values of w. In the latter case,which is the case of a regular singularity
at =, we have @ = 0 from (5), equation (6) is vacuous, (7) with n =1
determines p as one of the roots of the quadratic equation p(p-+1) + qz-=0
and (7) withn = 2, 3, ... determines the coefficients.

If g, =0 and g, # 0, then (5) and (6) cannot be satisfied, and there
exists no normal solution. However, subnormal solutions may be obtained
by transforming (1) into

3
8 7"+ [4§’q(§z)- i ] 7=0

by the change of variables
£=x*%, 2(E)= €% y(x)

If g, =0 and g, £ O, then (8) bas an irregular singularity of rank one at
oo, and possesses normal solutions. These give rise to subnormal solu-
tions of (1) having the form

(9) y = explwx®) § cnx"-%"
n=0

in this case.
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For the construction of normal and subnormal solutions for singularities
of higher ranks, for differential equations of higher orders, and for systems
of differential equations see Ince (1927, p. 423f., p. 427f.. p. 469f.,
p. 4781.).

Normal and subnormal solutions are formal solutions; i.e., if they are
substituted in the differential equation as if the infinite series were
convergent, the differential equation is satisfied. However, the infinite
series involved in the formal solutions are in general divergent.Never-
theless, they are far from being useless, for they represent asymptotic
expansions of solutions of (1). This situation has been investigated by
many authors, beginning with Poincaré: some of the papers are listed at
the end of this chapter, and it may be noted that the most general results
were obtained by Sternberg (1920) for the differential equation of order n
and arbitrary (finite) rank, and by Trjitzinsky (1933) for a system of first
order differential equations.

By and large there seem to be two methods for proving that the formal
solutions are asymptotic expansions of solutions of the differential
equation. One of these was originated by Poincaré and was developed by
Horn in a large number of papers of which we refer but to a few at the end
of this chapter. This method consists in finding integral representations
of Laplace’s type for the solutions, and then basing the asymptotic
expansions onthe work of sec.2.2. The othermethod,which was devcloped
by G.D. Birkhoff and his pupils, uses the leading terms, or partial sums,
of the formal solutions to construct a differential equation which in a
certain sense is close to the given equation when x is large, and then
compares the two equations. As it happens, singular Volterra integral
equations or integro-differential equations play an important part in both
methods.

We shall use a variant of the second method to discuss the differential
equation (1) with ¢ A~ 0. The proof to be given below is based principally
on the work of Hoheisel (1924) and Tricomi (1953, sections 47 to 50).
Since the analytic character of ¢ and y does not enter in the formal
solution, the investigation may be carried out either for real or for com-
plex independent variables.

3.3. The integral equation and its solution

We first consider the case of a real variable, and defer a brief dis-
cussion of the case of a complex variable to sec. 3.5. Let us then con-
sider

(1) y" +qx)y=0 x>a>0,

g o "-"‘———-~..’-o -
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assuming that ¢ (x) is continuous for x > a and

(2) 9(x)'\- io qnx-" as x -» oo, qoﬁo.

n=0

We thep obtain two formal solutions

3) e £ ¢ 2PN, ¢ A0
n=0

where w, p, ¢, ¢, ... satisfy 3.2(5), (6), (7). We shall show that these
formal solutions are asymptotic expansions of certain solutions of (1).

let w=0w,+iw, p=p, +ip,, and determine w = (—qo)% so as to
make e“* x~ bounded as x -+ oo. If g, is not positive real, we take that
value of the square root which makes w, <0; if g, >0 and Imgq, #0,
we take that value of the square root which makes p = Relg,/(2w)] >0;
and ifg > O and g, is real, we take either value of the square root. Thus,
we always have either , <0 or w, = 0 and p, > 0. These conventions
will be retained throughout the discuasion.

It will be convenient to transform (1) by setting

4) yx)=e“*x"Pz(x)

so that z satisfies the differential equation

2 1
(5) z”+2(m—£—>z'+ l:mz— wp_kp(p-: )+q(x):| z=0,
x

x x
Here w and p satisfy 3.2(5), (6). We put

6) x%[ox)—gq,—-q,x '1+plp+ 1)=F(x),

and see from (2) that F (x) is bounded, say

(7) |F(x)] <4, x> a.

We now rewrite (5) as

d dz
e2@r xT2P — ) 4 29 xT2PT2 P(x)2(x) =0,

;:\-:- dx
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integrate to obtain

dz x
e 2wz p2p _I; e 2P F () z(t)de = c, x 72" x?F
x

where ¢, and & > a are arbitrary constants, and integrate once more to
obtain

(8) z@)+ [, Kz, )F@E)z() e 2dt=c +c, [ e 2't?Pdr,
where

2p
9 K(x,¢t)= —f: exp[2w(t — )] (:—) ds.

Equation (8) is an integral equation of Volterra’s type. Any solution
of (5) satisfies (8) for some b, ¢,, c,, and conversely, any twice con-
tinuously differentiable solution of (8), for any b, ¢, c,, satisfies (5).
The existence of such a solution follows from the general theory of integral
equations when b < oo. When b = o, the integral equation (8) is a singular
integral equation, and the existence and differentiability of the solution
must be demonstrated.

In order to prove that (5) possesses a solution which can be repre-
sented asymptotically by % ¢ x7", we take b =0, ¢, = 1, ¢, =0 in (8)
so that the integral equation (8) becomes

(10) z(x) =1+ [ K(x, t) F(e) z (e} £™% dt.
This integral equation willbe solved by the method of successive approxi-
mations.
For any function, {(x), we set
(1) T¢x) = [, Klx, ) F() () ™2 de,
and then define

12) z,(x)=1, =z, (x)= Tzn(x) n=0,1, 2 ...

13) zG)= 3z, G

n=0
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It will now be proved that z (x) exists, satisfies (10), is differentiable,
and satisfies (5). The proof will be conducted in several steps.
The kernel, K (x, t), is bounded for t > x > x, where x, > a and x , is
sufficiently large.
Proof: Since either v, <0 or w, = 0 and p, > 0 we have
.i log (e 2wys s2p') =-2w,+ 2P, >0
ds s

for sufficiently large s; and hence

“2w.s 2p
1° P

<

is an increasing function of s. We now write

2p

2t~ Zeoy (e -

 2eke=s) (;)2/0 _ Ztems) (i) ' [¢,(s, )+ i, (s, )]
t

where

. _ 2ip,
b,(s, )+ i, (s, z)=e2‘wz-(t 2 (;) ,

and apply the second mean value theorem to (9), obtaining

-5 2P‘
K = fF ) (;) [$,(s, )+ icb, (s, )] ds

N\

= ezw'(t : (%) [ffqﬁ,(s, t)ds +ifxn¢2(s,z)ds]
+f§t¢'(s, t) ds+if_r:¢2(s, t)ds,

where x < &, n < t. The integrals on the right-hand side are bounded
functions of x and ¢, and

2w, (¢ —x) x 284

w -X

e ! (—> <l
t

‘."_-—U-\.."ﬁ e
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when ¢ > x > x, and x, is sufficiently large, so that

(14) |K(x, )| <B, t>2x>x,

for some x_ and B.

If IC(t)IOS Ce ™ for t > x,, where A > 1, then

ABC _\_
15 !
(15) |T¢6) < =77

xX2%,.

We have by (11), (7), and (14)
ITSEN=1S" K(x, 0) F(e) @) e™2 de| < ABC [T e d,

and this proves (15).
For the functions defined by (12) we have

“B"

n!

x ", €2x,.

(16) lz,(®)| <

Proof by induction. (16) is true for n = 0, and if it is true for any n, the
definition of z ,, combined with (15) shows that it is also true forn + 1.

The series (13) converges uniformly for x > x , and the function z (x)
satisfies (10). Moreover, z(x) is twice continuously differentiable and
satisfies (5). The uniform convergence follows from (16). If we substitute
z = Zz_ in the integral in (10), term-by-term integration is justified by
uniform convergence, and shows that (10) is satisfied. Furthermore, the
integral. in (10) is a differentiable function of x, and so is z (x). Since

K(x, x)=0, deg) = ¢2(r2) <i>zp,
dx t

we obtain from (10),

2p
a7 z' (x) =-f°° e2w(rs) (—;) F(e) z(e) e~ 2 de.

The last integral is again a differentiable function of x, and substitution
shows that z (x) satisfies (5), With z given by (13),

"‘."m’-n p——

3.3




3.4 SINGULARITIES OF DIFFERENTIAL EQUATIONS 69

(18) v, (x)=e“*x7 Pz (x)

satisfies (1). If ¢, lS positive and g, is real, we may take either of the
two values of (--q Y% for w, and we thus obtain two linearly independent
snlutions of the form (18). In every other case, there is only one solution
of this form, and a second solution may be written down in the form

19) y,(x) =y, [, Iy, @] 2 de,

where b is any number large enough to ensure that ¥, (x) #0 for x > b.
Since z(x) = 1+ 0(x™') as x » =, such a b certainly exists.

Thus in every case we have two linearly independent solutions of
(1) in the interval x > x, and, if a < x, these solutions can be extended
to the interval x > a. Itremainsto show that the formal solutions obtained
in sec. 3.2 are asymptotic expansions of tke solutions obtained in this
section.

3.4. Asymptotic expansions of the solutions

We first remark that

1) Lme—'t—vdt'\«e-‘ E = (v) x" VT as x - oo
a=0
(2) fbxe't—vdt’\'e 3 W), =" as x - oo,
a=0
where
3) =1, W) =vlw+Dew+r-1, r=1,2,...

Doth results can be proved by successive integrations by parts, with
g=t % h__=GFD" exp(F¢) in 2.1(5). In particular,

4) _!-me"'t-ydt=0(e"x x~Y) as X » oo

(5) f:e't'”dz=0(e’x-") as x » oo,

o a® 2l T T
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Next we prove by induction that the functions defined by 3.3(12)
possess asymptotic power series expansions of the form

6) =z (x)"* E c, x "k as x -+ oo,
k= n n

This is certainly true for n = 0. If it is true for any n, then
F)z ()~ g a,t”* as t - o,
k=n

Also
= x \2°
z @)= ez“"'"’(;-) F(@) z (¢) 7% de.

If ® and p are real, the last theorem in sec. 1.4 justifies substitution
of the asymptotic expansion of F (t) z (¢) in the integral, so that

@z, =)~ 2 kf 2“’('-‘)( ) ek dg as x - oo,

If w or p is comrplex, (7) can be proved by takingthe asymptotic expansion
of F(t) z (¢) to a finite number of terms, with a remainder, substituting,
and estimating the remainder in (7) by (4). In any event, each integral in
(7) possesses an asymptotic aPouey series expansionwhich can be obtained
from (1), and starts with x . By the third theorem in sec. 14, it is
permissible to substitute this expansion in (7): u(n) = n, the uniformity of
the asymptotic expansion is trivial, and the series 1.4(5) terminate so
that the question of convergence does not arise. Thus we obtain by
rearrangement

(8) z:.+t(x)~,.§ byx Tt

and by integration of (8) we obtain the asymptotic =xpanmsion of z ,,.

By the second theorem of see. 1.4, it is permissible to substitute (6)
in 33(13): since z_ = O(x™"), the question of uniformity is trivial, and
the series 1.4 (2) terminate so that the question of their convergence does
not arise. Thus we see that z (x) possesses an asymptotic power series
expansion of the form

9 z()~ § c x " as x -+ oo,
n=0
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It remains to prove that the coefficienis ¢ occurring here sausfy 3. 2(7)
It follows from 3.3(17) and the correspondmg relation for z”, that z' and
z” also possess asymptotic power series expansions. By a result in
sec. 1.6 it follows that (9) may be differentiated twice. The resulting
asymptotic series must satisfy 3.3(5) formally, and this leads to 3.2(7)
for the coefficients. Also, ¢ = 1.

We have thus proved that 3.3(18) is represented asymptotlca]ly by
one of the formal solutions, and we conclude by showing that 3.3(19) is
represented by the other. To do this we put

(10) y,(x)=e™* 2Pz (),

and have from 3.3(18) and (19)

S -2 p
1) z,(x)=z(x) f: ezw(x'!)(:_ [z (£))"2 de.

By the choice of b, z (¢) is bounded away from zero, and we have also
seen that z () possesses an asymptotic expansion, (9) with ¢ = 1, as

¢ - oo, Then

(z()]™2 = 2 a t™"+0(™") fore>b

for some ¢ _, and

L2150 ”i‘f’nf:ez“’“")(i)-zp t™"de
¢

z(x) n=0

-2
ezw(x-t ) (%) i O(t-”) de.

The integral under the summation sign can be expanded asymptotically by
(2), and the lastintegral is O ™) by (5). Since N is aa arbitrary positive
integer, z, (x)/z (x) possesses an asymptotic power series. Hence z, (x)
possesses an asymptotic power series expansion

(12) zz(x)"‘ go Cnx-" as x -» oo

' —— A P B T =
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By a similar consideration as in the case of z, it can be proved that
the coefficients occurring here satisfy a recurrence relation which differs
from 3.2(7) only in that w, p are replaced by —~w, —p. Thus, 3.3(19) is
represented asymptotically by one of the formal solutions.

If ® and p are both imaginary, the two fundamental solutions, both of
the form 3.3(18), are defined uniquely up to a constant factor: both are
bounded and neither approaches zero as x + «. In all other cases, one of
the fundamental solutions, 3.3(18), approaches zero as x + o, and is
defined uniquely up to a constant factor: the other, 3.3(19), is unbounded
as x » oo, and is not unique (since it depends on b). In fact,

Y ¥, @ +y,y,@)~y,y,®) _as PR v, #0.

3.5. Complex variable. Stokes’ phenomenon

The results of the preceding sections may be extended to the case of
a camplex variable x ranging over a sectorial region S,

@) x|l 29, agargx <B.

It will be assumed that ¢ (x) is analytic in S, and that 3.3(2) holds,
uniformly in arg x, as x - « in S. We then have two formal solutions
3.3(3), where  satisfies 3,2(5).

The line Relx (—qo)%] 0 is called the critical line orthe Stokes line.
If x > o along one of the rays of the critical line, the exponential factors
in both formal solutions remain bounded, and bounded away from zero.
If x» o along any otherray, the leadingterm in one of the formal solutions
increases exponentially.

First we assume that the critical line does not intersect S. Clearly, in
this case B — a < #, and we may take w as that solution of 3.2(5) for which
Re wx < O for all x in S. If x varies along any ray arg x = const.in §,
the results of sections 3.3 and 3.4 hcld, and these results canbe extended
to the sector S as follows. In the integral equation 3.3(10) we always
integrate along a ray, so that arg x = arg t. The boundedness of the
kernel then follows for each x in S, ard uniformly in x when a < argx < 8.
The integral equation can be solved as before, each z (x) can be shown
to be analytic in S, and z (x) is also analytic in §, smce it is the uniform
limit of analytic functions. In 3.3(8), b is chosen so that y (x) # O when
|x{ > b, a < arg x < B. The result is the existence of two solutiouns, v,
and y,, in S which are represented asymptotically by multinles of the

o —-—
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formal solutions 3.3(3). The asymptotic expansions hold uniformly in
arg x as x » o, a < arg x < 8. Any solution of the differential equation
is alinear combination of y, and y,; and its asymptotic expansion follows
from the asymptotic expansions of y, and y,.

Next we assume that the critical line intersects S and decomposes it
into a finite number of sectors, §,, k = 1, ...", K, and certain rays of the
line itself. In eacn of the sectors S, we have a value w, of @ such that
Re w,x <0 forallx inS,, and in each S, we have a fundamental system
Y > ¥ 5 Which is asymptotically represented by the formal solutions. For
a fuller discussion of these fundamental systems the reader is referred
to Hoheisel (1924). It turns out that the fundamental system belonging to
a ray of the critical line may be taken also as a fundamental system for
the two sectors separated by that ray. Each of the two solutions is
dominant (exponentially increasing) in one of the two sectors, and re-
cessive (exponentially decreasing) in the other.

Let us consider a solution, y (x), of the differential equation in S. In
each of the sectors S,, y is a linear combination of the two fundamental
solutions for that sector; in each of the sectors y will be represented
asymptotically by a linear combination of the two formal solutions; but
the coefficients may vary from sector to sector. This circurstance was
discovered by Stokes, and it is called Stokes’ phenomenon. The sectors
S, are sometimes called Stokes sectors, and the critical rays, Stokes
rays.

For the determination of the coefficients involved in the expression
of y (x) as a linear combination of the formal solutions see Turrittin

(1950).

3.6. Bessel functions of crder zero

We shall illustrate the results of the last few sections by a brief
discussion of the differential equation

Q) z"+x"'z'+2=0

satisfied by Bessel functions of order zero. The change of variable

. ——-—
g W'-ﬁ"
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transforms (1) to the standard form

1
(3) y”+ (1+ 4_x2> y=0.

This equation is of the form 3.3 (1), and in 3.5(1) we may take @ = 0 and’
a, B arbitrary.’

We obtain formal solutions as in sec. 3.2; equations (5), (6), (7) of that
section become

©02+1=0, p=0, 2(‘mcn=(n—1/2)zcn_l;

and with the abbreviation

¥ -1/22 T 1/2)12
@ “n:l_[ (Lz/) =[1(n+ /2)]

2%nl 7

=1

and appropriate choices of ¢ , we obtain two formal solutions

5) S, =(2/n)fe="i § g (~i)nanH

n=0

(6) Sz(x) - (2/17)% e ixtin/a °2° a, inxn=k

n=20

of (1). Between the formal series (5) and (6) the identities
() S,(xe™)=-5,(z), S,(xe”"")=§,(x)
S,(xe™) =S, (x), S,(xe™) =-S5, (x)

hold.

Since w = % i, the critical line is the real x axis, and according to
the theory outlined in the preceding section, every solution of (1) is re-
presented asymptotically by a linear combination of S, and S, in any
sector which is entirely in the upper (or lower) half-plane. As the real
axis is crossed, the coefficients may change. We shall see that such
changes actually occur.

It can be verified by substitution that (1) is satisfied by the Bessel
function of the first kind of order zero

4 [} { . St Pas A Y
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< D=

which is an even entire function of x. Poisson’s integral representation

1 .
(9) Jo(x;=—f'l et (1—u2)% du
—J_

may be verified by expanding the exponential function and integrating
term-by-term.

Let us assume for the moment that Re x > O. Then e vanishes
exponentially as Im u > + o, and we may break up the integral in (9)
according to

REEN A

In the first integral we put

txu

u=1+it, 1-u=te '72 l+u=2+1t,
and in the second,
u==1+1t, l-u=2-it, 1+u=te'"?

thus obtaining two functions which are constant multiples of

(10) H!" (x)=

ER N

eix-i-n/l J’°° et t—% 2+ it)_% dt
(o]

e-—ix+i77/4 J“°° e—"t—y’ (2—it)_% de.

o (%)= .

RN

The functions defined by (10) are known as Bessel functions of the third
kind, or Hankel functions, of order zero. These functions are defined by
(10) for Re x > O, but their domains of definition can be extended to
-7 < arg x < 27 in the case of H{'", and to —~27 < arg x < 7 in the case
of H!?, by rotating the path of integration as in sec. 2.2.

It can be shown that Hé” and Héz’ are also solutions of (1). Clearly

1 1
an Jo) = HY () + = H® &),

."—"—"“.’ -p S
a4 -a
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and a closer investigation reveals that both HE" and H ? have logarithmic
singularities at the origin. The knowledge of these singularities leads to
a definition of the Hankel functions for all values of arg x.

The integrals representing Hankel functions are Laplace integrals,
and their asymptotic expansions for large x may be obtained by means of
the last theorem in sec. 2.2, the result being

(12) H{M(x)~ S, (x), uniformly in arg x, asx - oo,
~r+egargx<2m-—¢ €>0

(13) H;z’ (x) ~ S, (x), uniformly in arg x, as x » oo,
-2r+egargx<nm—¢ €>0,

From (11) we then have

(14) 2J,(x)~S,(x)+S,(x), uniformly in argx, aszx - o,
~-r+eLargx<m—¢ €>0,

In the last equation we have used the-symbol ~ in a somewhat unusual
manner, in that the right-hand side is not one asymptotic expansion but
the sum of two. A justificiation of this use is based on the circumstance
that on the rea] axis the two expansions are of the same order and may
be combined into a single expansion (which then is not an asymptotic
power series), while in the upper [lower] half-plane S, (x) [S, (x)] is re-
cessive and may be omitted.

We have thus obtained the asymptotic expansion of J (x) in the whole
plane with the exception of a narrow sector around the negative real
axis. To obtain asymptotic expansions valid in sectors including the
-negative real axis, w= remark that it follows from (8) and (14) that

2J°(x) =2dJ, (xe™) ~ SF‘ (xe™%) + Sz(xe'”i)
as x » oo and -~ + ¢ < arg(xe™') < m — ¢, so that

(15) 2J,(x)~ S,(x) -§, &), uniformly in arg x, as x - oo,
-2r+esargx <—¢

by (7); and similarly J (x) = Jo(xe—-rn') and

(16) 2J,(x)~ -5 (x)+ S, &), uniformly in arg x, as x -+ oo,
e<argx<2n-ec

’;"—’—‘-’\"‘v—-—
-
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A comparison of (14), (15), and (16) shows the Stokes’ phenomenon.
The rays excluded by narrow sectors are the Siokes rays. At first it may
seem strange that the sectors of validity of these asymptotic expansions
overlap, but inere is no contradiction involved in this. The regions of
validity -of (14) and (15) have the common part -7 + ¢ < arg x <—¢; in
this common part S2 (x) is recessive so that the right-hand sides of (14)
and (15) are asymptotically equal. Thus, the coefficients of the formal
series jump in sectors where these series are dominated by the other
series.
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CHAPTER IV .
DIFFERENTIAL EQUATIONS WITH A LARGE PARAMETER

In this chapter we describe briefly the asymptotic theory of ordinary
homogeneous linear differential equations of the second order containing
a large parameter. For this theory and its extensions to equations of
higher orders, and to systems of diiferential equations of the first order,
see Ince (1927, p. 270f[.), Kanke (1944, p. 62, 102f., 137 ., 213 {f.),
Wasow (1953), the references given in these works, and the references
given at the end of this chapter.

As in sec. 3.2, we may transform the differential equaticn to standard
form

)’” +q(x1 )\))’ =07

where x is a real or complex variable, and A is a real or complex pa-
rameter. We shall investigate the behavior of the solutions of this differ-
ential equation as A > A, and without loss of generality we take A = .

The reader will be expected to be familiar with the basic theorems
regarding the dependence of solutions of a differential equation on
parameters occurring in the equation (see, for instance, Kamke, 1930,
sec. 17, sec. 8).

4.1. Liouville’s problem

In the course of his classical investigations of the Sturm-Liouville
problem, Liouville discussed the Lehavior of solutions of the differential
equation

1) y*"+M\p@)+rx)ly=0

as A » . Here x is a real variable, a < x < b, p (x) is positive and twice
continuously differentiable, and r (x) is continuous, for ¢ < x < b. Liou-
ville’s procedure may be summarized as follows.

78
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New variables, ¢ and 7, are introduced by the substitution

2 &= [Ip&)* dx, n=[p@I)¥y,

which carries the interval ¢ < x < b into a < ¢ < B, and the differential
equation (1) into

dzq n
(3) 1E? + A% =p(£)y,
where

P” 5 plz 0
— ==

p? 16 p* p

1
4) p(&) s

is a continuous function of &, a< £< B. (p' = dp/dx, etc.)
By a method similar :o that employed in sec. 3.3 it can now be shown
that solutions of (3) satisfy the Volterra integral equation

(5) n(€)=c, cos A¢+c, sin Aé+ N7 f_f sin A(&-¢t) p(e) n(t) de,

where a < y < B and c,, c, are arbitrary. 7({) and ¢, cos A€+ ¢, sin A&
have the same value, and the same derivative, at £ = y.

The solution of (5) can be obtained by successive approximations ‘in
the form

© 76 0= F (&N,
where
n,(& N =¢, cosA&+ ¢, sinAé

N,4,(& A) = A™! ff.sin)‘(f— t) p(t) n (¢, A) dt n=0,1, ....
If |p(£)] < A, it is easy to prove by induction that

‘c|| + |czl A" lf- )’ln

n=1 2 ...,
n! A

m,(& )<




80 ASYMPTOTIC EXPANSIONS 4.1

and in the case of a finite interval (a, B) it follows that (6) is uniformly
convergent for a < £< 8, A > A,> 0, and is also an asymptotic expansion
of (& A) as A » o,

The 7 are very difficult to compute. Cther approximations for large A
may be obtained from formal solutions (which are divergent in general).
There are two methods. Cne uses formal expansions

i M8

a (x) X" cosA &+ s B, (x) A7" sinA &
n=0

n o

for y (x, A), while the other uses formal expansions

PAE+ b3 y (&) A7"

n=20
for log y (x, A). In the second method, y is a solution without zeros. In
either method an approximation to y is constructed by taking a partial
sum of the formal expansion; and this approximation is compared with y

by means of an integral equation. Either of these two methods reduces to
Liouville’s process if the partial sum in question consists of one term.

4.2. Formal solutions

Instead of 4.1(1), we shall discuss the slightly more general differ-
ential equation

1) y" +q(x, M)y=0,

If g(x, A) is a formal power series in A~ with coefficients which depend
on x, then two linearly independent solutions of (1) may also be repre-
sented by formal power series in A™'. Cn the other hand, if the formal
expansion of ¢ in powers of A contains positive powers of A, then the
formal expansion of y will be a Laurent series. Nevertheless, we shall
see that in the case that g(x, A), as a function of A, has a pole at A = oo,
we can construct formal solutions which are analogous to the normal and
subnormal solutions of sec. 3.2.
In (1), we shall assume that ¢ (x, A) is of the form

@ 2 g (A%

n=0
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where the ¢ (x) are independent of A, and & is a positive integer. e shall
also assume that qo(x) does not vanish in the interval (or simply-
connected region in the complex plane) over which x varies.

Corresponding to the two methods mentioned at the end of sec. 4.1,
we shall obtain two kinds of formal solutions of (1). The first one of
these is of the form

(3) 2 a (x) A7" exp[hg'o B, (x) AV

n=

In substituting (3) in (1), we use the convention q,= o, a = 0 for
n=-1,-2-3, ..,ad B, =0 forv="-1,-2 ... and also for v=1F,
E+1 ...

All summations may then be extended over all integers, and we obtain
[E By A ¥+ (=8 AT e AT+ 22 BIATVE ap A"
+3 a” AT"+Egq AR S a A""=0.

Picking out the coefficient of A%*™"

@ Za,_ @G +ZB. B, )+2a,_ B/,

+23 a,’l... B! +an_2h 0
n

n=—k

for all integer values of n.
The first non-vacuous condition arises whenn = 0. If we setn =0, 1,

wee » k=1 in (4) we obtain
9. +2B,B._,=0 m=0,1,..,k-1
v

or

(5) 102+q0=0
a=1

(6) 2B8 B:+q_+ p BLBL_V=0 m=1, ... k-1
v=1

In consequence of these relations, we may restrict summation tom > k& in
the first sum in (4). For n = & in (4) we have

k=1 -
(7) 2a; B, +a By +q, + _E_ : B, B.-,)=0,
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and when we replace n by £ + n in (4),

k=1
(8) 2a': ﬁé + an(Bg +q,+ X 13; Bi-,)
v=

k=1

+ .‘E'an°l (ﬁ: +qh+l W 1/=2- +1 B‘I‘IIB;+."'V)
L [ !’ "
+2 X a,_, c+a _ =0 n=1,2 ....

We thus see that (3) satisfies (1) formally, provided that the a_ and
the B satisfy (5) to (8). In these equations, empty sums (i.e., sums
whose upper limit of summation is less than the lower limit) are inter-
preted as zero. Since 9, # 0, we may choose a branch of [-—qo(x)]%, and
then (5) determines 3, up to an additive constant. Moreover, Bo' £ 0,
and hence (6) determines 8,, ... , 3,_, recurrently, up to an additive
constant in each. (7) determines @, up to a constant factor, and (8)
determines a,, a,, ... recurrently, up to an additive constant multiple of
a, in each. Corresponding to the two branches of (—qo)A, we obtain two
formal solutions of the form (3).

A second type of formal solution is

© expl £ B,() A",
Substituting (9) in (1) we o'btain

> B: Ak-n_'_ (2 B". )\k-n)z_'_z anzk—n=0,

and comparing coefficients of A*™",

(10) B 2+q,=0

(11) 28.B'+q, + = B B!__=0 n=1, e, k-1
a= 1

(12) 28 B +q + % BL Bl +B =0 nek k+1l, ...
a=1

There are two linearly independent formal solutions of this type.
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The connection between these two types of formal solutions is fairly
obvious. Equations (10) and (11) are identical with (5) and (6), and
3 a, A7" is the formal expansion of

exp ("gh B, Akmy,

Throughout this discussion we have assumed that g(x, A), as a func-
tion of A, has a pole of even order at A = . If the pole is of odd order,
then no solution of the form (3) or (9) exists, and instead of powers of
A we must expand in powers of A%,

4 .3. Asymptotic solutions

We shall now show that under certain assumptions, the differential
equation 4.2(1) possesses a fundamental system of solutions which are
represented asymptotically by the formal solutions obtained in the pre-
ceding section. It does not matter whether we compare solutions of
4.2(1) with

-1 -
s a (x)A™" eXp[:z.'oB,,(x) AV,

n=0

where the a and B, satisfy 4.2(5) to (8), or with
k -
expl +%°l B, (x) A+,

where thie 8 satisfy 4.2(10) to(12), for the a’s and 8’s can be so chosen
that the ratio of these two expressions is 1 + O (A™V).
We fix a positive integer N, and set
R 4N =1
(1) Y.(x)=expl 3 B _.x)A*" j=1,2,
J n=0 ni

where Bo" =~ B;Q , and for each j, the an satisfy 4.2 (10) to (12). These
coefficients are completely determined by g, ... , §,, 45—, and certain
derivatives of these functions, and we shall say that the ¢ are suffi-
ciently often differentiable if all the derivatives entering the determin-
ation of the an ,n=0, .., 2k + N ~ 1, ex’st and are continuous
functions of x. We let x vary over a bounded and closed interval L
a < x < b, and A, over a sectorial domain S: {A| > A,, ¢ <argA< P,.
The theorem to be proved is as follows.
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If for eack fixed Ain S, q(x, A) is @ continuous function of x over I'; if

k4N =1 ’ -
2 9z, D= I q,@A*F"+00Q™),

n= 0
uniformly in x and arg A, as A > e« in S, where the q_(x) are sufficiently
often difterentiable in I, and

(3) Relr* [-q,(x)]*}1£0

when Ais in S and x in I, then the differential equation

@) y" +qx, )y =0

possesses a fundamsntal system of solutions, y ,(x) and yz(x), so that
(B) y,@=Y & [1D+00™)

y @)=Y/ [1+00™"],

uniformly in x and arg A, as A= o in S.

We shall prove this theorem by a method analogous to that used in
sec. 3.3. By (3) and 4.2(10) we may choose 8, and B,, so that for
each A in S, Re[A* B, (x)] is an increasing, and Re[A* Boz(")] a
decreasing, function of x. It then follows from (1) that for each sufficiently
large A in §, |Y,(x)| is an increasing, and |Y, (x)| a decreasing, function
of x.

To establish the existence and the asymptotic property of y,(x), we
substitute ,

6) y,(x)=Y,(x)z(x)

in (4) and obtain
YI
N z" +2 Y—' z' +Fx, N)z=0,

where

"

(8) F(x, K)=% +q9= &+%-‘ B:‘)\k-n‘._(u*g-' ﬁ,:| Ah-n)z_._q:o(x‘ﬂ)
n= 0

1 n=20
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uniformly in x and arg A, as A+ e in S, by (2) and 4.2(10) to (12). Equa-
tion (7) may be written as

L [Yf(x) 4z |, Yf(x) F(x,A)z=0,

dx - dx

and by two successive integrations, and a suitable choice of the con-
stants of integration, we obtain

9 z()=1 -f:x(x, t) F(t, N) z(2) dt,
where

K(x, t) = f: Y3() Y 2(s) ds.
Since |Y'(x)| is an increasing function, we have IY,(t)I < |Y,(s)], and

K (=, t)] < (b~ a) a<t<x<b.

The existence of z (x) now follows from the general theory of Volterra
integral equations, or can be established by successive approximations.
From (8) and (9), z(x) = 1 + O(A™V), uniformly in x and arg A, as A+ o
in S. Moreover, z (x) is differentiable,

2@ == [TY2O Y72 =) F(t, Nz (@) de = 07N,
and
Y, (x)
Y (x)
This proves (5) for j = 1. The proof for j = 2 is similar, except that b,

rather than a, must be chosen as the fixed limit of integration in the
integral equation.

y! &) = Y!(x) [z(x>+ z'(x)] =Y/ @)[1+ 00N

4.4. Application to Bessel functions

We shall now apply the methods of the last two sections to prove the
asymptotic formulas*

(1) J\(rsech B)~ (2rAtanh BY % exp(Atanh f-AB) as A-w
-%
2) H}(\"z)()t sec B) "'(;-n)\ tan ﬁ) explti(Atan B-AB-r/4)] as A- .

* The symbol Sused in these formulas must not be confused with the function S(x) to be

used below.
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Equatior (1) holds for 8 > 0, uniformly in 8 if 0 < 8, < B<B, < o
Equation (2) holds for 0 < 8 < /2, uniformly in Bif0 <e<B<n/2-¢;
and in this equation (and similarly later in (18)) the upper sign holds for
Hi", the lower sign for #{? . Both results may be derived from integral
representations of Bessel functions by means of the method of steepest
descents (Watson, 1922, sec. 8.4, 8.41).

The functions

% A(Ax), =% ¥\Ax), ¥ BV, =¥ B2 (Ax)
» are solutions of the differential equation

3) y"+M\*-(2-Y%)x"?*y=0.
This equation is of the form 4.3 (4) with
k=1 gqg,x)=1-x72% ¢,(x)=(2x)7%

all the other g_(x) vanishing identically. The points x = 0, = are singular
points of (3), and x = 1 is a so-called transition point at which the con-
dition 4.3(3) is violated for any value of A. On any interval @ < x < b
which does not include any singularity or transition point, the theorem of
sec. 4.3 will yield the general form of the asymptotic solutions but it will
fail to indicate the expression of y, and y, in terms of the standard
Bessel functions. In order to identify our solutions in terms of Bessel
functions, we shall extend the interval to one of the singular points of
(3). Since this case is not covered by the thzorem of sec. 4.3, we shall
use the methods rather than the results of the preceding sections.

Let us first discuss (3) on the interval 0 < x < b < 1. From 4.2(5) we
have

Bl®)= t(x"2 - 1%,

and hence
_ - =2 _ 1V de=(00=-x%+1 a .
4 B, )=B8&)=] (= 1% dam (1~ 2= + og14»(1—:\:2)
From 4.2(7),
2(1; B;i— a, ﬁ; =0’

|
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so that

(5) a,(x)=[B'@)]*=alxr) =x* Q-22)7%,
With @ and B8 so defined we form the functions

6) Y,(x)=ak) MY, ¥ (x)=alk)eME),

which correspond to the leading terms of the formal solutions.
The integral equation for z =y ,/Y | is

(7) z2(x)=1- ["K(=z, ) F(e, A) z (¢) de.

By a straightforward computation we find

Yy 2( __) 44+ x2
(8) F(x, )) T+)\ T purRlrrp ol

so that F is bounded on the interval. Moreover, a~2 = 8’ from (5), and

. 2
(9) K{x, t)=/ ['a_(_t)_] expi2A[B(t) - B(s) ds
a(s)
t

a’(¢)
2A

(1- expl2A[B () - B()).

Now, B (x) is an increasing function of x, B(¢)— B(x)<0 for O <t<x<b<]1,
and the exponential function will be bounded if Re A > 0. Also a®(¢) is
bounded. We thus arrive at the estimate

10) |F @, MK (x, 9|

IA

for Re A>0,0 <t <x <b< 1 Here C isindependent of A, x; ¢.
We are now ready to solve the integral equation (7) by successive
approximations in the form

zo(x)= 1
zn“(x)=f:K(x, t) F(e, N) z_(¢)de n=0,1,...

@)= 2z (x)

n=0

. -———
—-—.—.’ﬂ”—-
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From (10) it is easy to prove by induction that

1 Cx \"
=< )

so that the series defining z converges uniformly in x and A if A is
bounded away from zero; z (x) satisfies the integral equation, is twice
continuously differentiable, satisfies the appropriate differential equation,

and
x
z(x)=1+0 <—>.
A

This establishes the existence of the solution y, of (3) which has the

property
(11)y,(x)=Y,(x)[1+O(—i>], O<x<b<l Rer>0,

It remains to show that this solution is a multiple of J)\()\x).
Since y | is a solution of (3),

(12) =™y (x) = ¢, (A) H(Ax) + ¢, (A) Y (Ax).

Now, fix A, and let x -+ O. [t is well known (RWatson, 1922, p. 40, p. 64)
that

A
(Ax/2)
J(Ax) ~ —4m8 — +0
N o D ®F
A ay~=A
Ax/2 Ax/2
Y)\()\x)"*% cot.\n-(-r—%-cosec)\n as x-0,

and it follows from (11), (6), (5), and (4) that *
2Hy D~ Y ()~ MO (2N eN asz a0,

Making x » 0 in (12), we see that

c,W=eMAra+ D, c,(A)=0,

* Note that )’" is the approximate solution, Y)\n Bessel function of the second kind.
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and by Stirling’s formula,

c,(W)=(2m)* [1+0<%>].

We thus find that

(13) Jy(Ax) MeThe7H Y, (x) rl o=
=iy 1@ [0\

=@2rrx)* Y, (x) [1 +0 (%)]

when 0 <x <b <1 and Re A > 0. If we put x = sech 8 and take A positive
in the latter form, we obtain (1).

Let us now turn to the discussion of (3) on the interval 1 < @ < x < o,
In this case

(14) a(x)=x*(x*-1D)"%=[-iB' (x)]7*
Blx)=i [ Q ~x ) dy = i(x%2=1)% =i cos™' 27,

where cos ™' denotes the principal value of the inverse cosine,in particular
cos™' x7' » 7/2 as x » w. The comparison functions are again of the
form (6), with a and B defined in (14). The integral equation for z =y ,/Y |

1S

(15) z(x) =1+ f:"K (x, t) F (¢, A) z (2) de.

Equation (8) holds, and shows that F(z, A\)= O(t™%) for¢t> b > 1 and all
A. Since a”? = — 2’ in this case, the evaluation of the integral in (9)
leads to

2
K (=, t)=—g§)- (1-expi2A[B() - B(x)1}).

Now, —~i 8 is an increasing function of x, and ¢ > x, so that the exponential
function will be bounded if Im A > 0. Also a®(¢) is bounded, and we have
the estimate
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forIm A >0, 1<a < x <t, C being independent of A, x, ¢.
We now set

zo(x)= 1
Zo@ =K, e)Fle, Nz () de n=0,1,..

z(x)= 3 z_(x)

n=20

From (16) it is easy to prove by induction that

1 c \"
mws;Qm>.

so that the series defining z converges uniformly if A is bounded away
from zero; z (x) satisfies the integral equation, is twice continuously
differentiable, satisfies the appropriate differential equation, and

z(x)=1+0 :
2 \x)=1+ A—x—.

This establishes the existence of a solution y, of (3) which has the
property

17 y,x)=Y,x) [1+0<—1—>-| l1<a<x<e, ImA>O0.
Ax _]

It remains to show that this solution is a multiple of H}{"(Ax).
Since y , is a solution of (3),

(18) x ™%y, (®) = ¢, M E{"A2) + c,(\) H{P? (Ax).

Let us fix A and make x + oo, It is well known (Watson, 1922, sec. 7.2)
that forO < arg A< 7

(1,2 (2 - . Am 7@
Hy"2(Ax)~ \’K; exp | i )uc——z-z- as  x - oo,
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and it follows from (17) and (14) that
y, @)~ Y, (x) ~ exp[AB(x)] ~ explidx — iAn/2] as x- .

Making z » e in (18) we see that
c,(N) = (1/272)% e /4, c,(A) =0,

If arg A = #, we must use a slightly different asymptotic formula for # {2,
but the conclusion remains the same. We thus have

(19) H{PAx) = (1/27A2) % ™I Y (x) [1 +0 (Al >]
x

where 1 <a < x < e and Im A > 0. By a similar proof

(20) H{?(Ax) = (1/27Ax)"% e "™ ¥, (x) [1 +0 (Xl_>]
x

when 1 <a < x <e and Im A <0. If we take A positive and put x = sec f3,
we obtain (2).

4.5. Transition points

lLet us consider again liouville’s differential equation
8 q

Q) y" +A\Vp@)+rx)]y=0

with large positive A. As in sec. 4.1, x is a real variable, a < x <.b, p(x)
is real and twice continuously differentiable, and r (x) is continuous, for
a < x < b. Instead of assuming p (x) to be positive, we now assume that
p &) has a zero in (a, b). A zero of p (x) will be called a transition point
of the differential equation (1). For the sake of definiteness, we assume
that p (x) has a simple zero at x = ¢, and no other zero in a <x < b, and
also that p’ (¢) > 0, so that p(x) <O when a < x < ¢, and p(x) > O when
c<x<b.

We have seen that in the interval ¢ + € < x < b, ¢ > 0, where p (x) is
positive, solutions of (1) are asymptotically of the form

2) c, [px)"% costr | [p(x)]"‘ dx} + c,[p ) % sintA fIp (x)1% dxd,
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and it can be shown similarly that in the interval a < x < ¢ — ¢, where p (x)
is negative, solutions of (1) are asymptotically of the form

(3) cy[-p @)7¥ explA [[-p x)}* dx} + ¢, [-p (x)] ¥expl-A [[-p(x))%dx}.

The validity of these asymptotic forms depends on the fact that p (&) in
4.1(4) is a bounded function, and hence it is clear that neither of the
asymptotic forms can be valid at x = ¢. To the right of x = ¢, (2) shows
that every solution of (1) has an oscillatory character; and to the left
of x = ¢, (3) shows that every solution of (2) has a monotonic character.
In the immediate vicinity of x = c, the transition takes place from one
type of behavior to the other.

In this situation two problems arise. The first of these is the problem
of finding the connection between the constants ¢, and c, on the one
hand, and the constants ¢, and ¢, on the other hand, if (2) and (3) re-
present asymptotically the same solution of (1) in different intervals; and
the second problem is the determination of the asymptotic form of the
solutions of (1) in the interval (c ~ ¢, ¢ + ¢€).

There are in essence two ingenious methods for solving the first
problem. The first of these methods was used by Jeffreys in 1923, and re-
discovered by Kramers a few years later. It is based on the remark that
sufficiently nearto x = ¢, p (x) may be approximated by the linear function
(x — ¢) p’ (c), and r(x) may be neglected. The resulting differential
equation can then be solved in terms of Bessel functions of order +1/3.
A comparison of the asymptotic forms of Bessel functions with (2) and
(3) leads to the desired connection formulas between ¢, and ¢, on the
one hand, and ¢, and ¢, on the other hand. The second method was
developed by Zwaan in 1929, and it avoids the transition point altogether.
ii p (x) and r (x) are analytic functions of x, the differential equation is
integrated along a path in the complex plane which consists of the real
intervals (a, ¢ — ¢) and (c + ¢, b), and of a semi-circle in the complex
plane joining ¢ — € and c-+ €. Along this path, p of 4.1(4) is bounded and
Liouville’s method (or a variant of it) can be applied. This method leads
to the same connection formulas as the first one. Both methods can be
extended to cases when p (x) has azero of an arbitrary order. They are
known as the WKB method, or sometimes also the RKB] method. For a
fuller description see, forinstance, Morse and Feshbach (1953, p.1092 f.).

D ST Y
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The second problem, the determination of asymptotic forms of the
solutions of (1) in the interval (¢ — ¢, ¢ + ¢), is much more difficult.
There seems to be no simple elementary function which describes the
transition from monotonic to oscillatory behavior, and it seems plausible
that the asymptotic forms will involve some higher transcendental function.
Now, the simplest differential equation of the form (1) and having a
transition point is the equation '

2

o +/\.2xy=0;

&) dx?

the solutions of this equation are fairly well known, and it seems tempt-
ing to seek asymptotic forms of the solutions of (1) in terms of solutions
of (4). Liouville’s transformation 4.1 (2) transforms 4.1(1) into a differ-
ential equation with approximately constant coefficients, and similarly,
we can find a transformation

(5) &= (), n=¢lx)y

which transforms (1) into an equation approximately of the form (4). l1he
transformation (5) carries (1) into

d217 1 q{)n 5 ¢'> d'l] [ )\zp+r ‘,ll dz !/I—‘}
T 2= ) —= 4 | = —— | n =0.

ag? Tg'\g T w ) aeT e T at

In order to reduce this differential equation approximately to the form
(4), we first determine i so that

8" Y "
(6) 7 -2 —=0, Y= @
P ¢
and then ¢ so that l
P
¢I2

With ¢ and  so determined, the differential equation becomes

(7 =¢, ¢¢12=P'

2

n
d&?

(8) + A% &n = p(O)n,
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where

1 ¢m 3 ¢1/2 r
© @) =5 3 -T g T

Under the assumptions or p and r made at the beginning of this
section, there is a unique three times continuously differentiable real
function ¢ which satisfies (7). For this function, ¢’ is bounded away
from zero, p(£) is « bounded function, and we shall expect that thke
asymptotic form of the solutions of (8) is

(10) ¢, H,(&) + ¢, H,(&),

where H | (x) and H, (x) are two linearly independent solutions of (4).

This generalization of Liouville’s method was originally developed
for the purpose of obtaining asymptotic forms of the solutions of (1) in
the interval (¢ — ¢ ¢ + ¢€), but it is clear that it can be extended to the
entire interval (a, 6). The extension enables us to dispense with three
different asymptotic forms in (@, ¢ — ¢), (c — ¢ ¢ + ¢), (c + ¢ b) respec-
cively, and yields a single uniform asymptotic representation of the
solutions of (1) in @ < x < b. The method was originated by L.anger, who
developed it in a number of memoirs of which a few are listed at the end
of this chapter. Among those who developed further Langer’s method we
mention in particular Cherry. A survey of the literature regarding this
method is available. (See refierence at the end of this chapter.)

Before describing this method in greater detail we shall list briefly
some properties of the solutions of (3).

4.6. Airy functions

‘The differential equation
2

dz?

—zw =0

1)

can be reduced to the differential equation satisfied by Bessel functions
of order 1/3 (Watson, 1622, sec. 6.4). We shall use the notation

2 ,
(2) 4‘___3_23/2’ w=ez*rr1/3.
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Two linearly independent solutions of (1) are the so-called Airy
fuactions of the first and second kind,

1, 1 (2 Y
@) 4i@)=2 2 1, (=1, (Ol== (= ] K0

%
Bi(z) = G) [1_,,,(O)+ I, ()

and by direct computation
(4) Ai(z)Bi'(2)- Ai'(2) Biz)=n"".
We also have

1
(5) Ail-2)= —z*[J_,, (Z)+J, ()]

3
YR
Bit-2)= (7 ) 1,5(0 -7,

For real x, the integral representations

oo 3
(6) Ailx)= 77"/ cos (-t— + xt) dt
o 3
= .3 )3
Bi(x) = n-'f exp{ —— +xt ) +sin|— +at dt
3 3
[}

hold, and these integrals may be converted into contour integrals which
remain valid when x becomes complex.

Ai(z) and Bi (z) are both entire functions of z: they are real for real z.
Ai(z) has a string of zeros on the negative real axis, and it has no zeros
elsewhere (Watson, 1922, sec. 15.7). For any integer m, w_(z) =A4i(w™z)
is also a solution of (1). By direct computation,

1 m(m—=k) ] m+k 1
(7N w_(z)w,',(z)—w:(z)wk(z)= 3sin 3 exp[.n( +E-)]

7y 3

. TP P
— -
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and hence it is seen that w_ and w_,, are linearly independent. Cn the
other hand, any three of the w_ are linearly dependeat, in particular,

8) w (N+ow_ ,,@)+ow,,,()=0.

Also
(9) Bi(z)=ilw? di{w? 2) - o di(wz)].

The power series expansions of 4i(z) and Bi(z) follow from (3). In
particular

1
(10) 3%% 4i(0)=3"* Bi(0)=

r(2/3)
1
_q1/3 .7 0) = ~1/6 . ! — —
33 4i'(0)=3 Bi'(0) T

The asymptotic behavior of A4i(z) has been investigated in sec. 2.6
for —n/3 < arg z < n/3. The analysis can be extended by rotating the
path of integration in the ¢-plane of 2.6(3).

1
(D) Ai@)== 7% z¥ e {1+ 0(,™N]

i
a8 Z e, -w<argz<m

Results valid in sectors containingthe negative real axis may be obtained
by using (8).

(12) Ai(z)=-;- 7%z % e 1+ 0N +ieb [T+ 0N
as z oo, 7/3 <argz<5n/3 -.

Ai(z)'a-% %z % et 1+ 0N -iet 1+ 0B

as z » o0, -57/3 < argz <-n/3.
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From (9),
(13) BiG)=r% 2% et 1+ 0(L™M]
as z-» e, —n/3<argz<n/3.

All these asymptotic representations hold: uniformly in arg z if z is
restricted to a closed sector inside the open sector stated above.
It follows from the asymptotic formulas that the functions

(14) (1+|z|5‘)e§Ai(z) -n<argz<m
(15) (1+ |z]¥)e”% Bi(2) -n/3<argz <n/3

are bounded functions of z. The reciprocals of these functions are also
bounded provided that the zeros of the first function are suitably ex-
cluded, for instance, if -7 + ¢ < argz < 7 — ¢ € > 0, in (14): the second
function has no zeros.

For further information on Airy functions, and for numerical tables of
these functions, see Miller (1946).

We conclude this section by proving the following inequality. If w (z)
is that solution of (1) which satisfies w(t) =0, w'(t) =1, then

2(x2)¥ w(x)

(16) O < Fmrrr S 1

for
2 2
x>0, ¢>0, ¢=—2x¥2>50, r=—1¥2>0,
3 3
The proof depends on a comparison theorem of Sturm’s type.
el T ™ ¢
2 (xt) %

vix)=

satisfies the differential equation

S
(17) v - <x+1—6:2-> v=0,
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and the same initial conditions at ¢ as w. From (1) and (17) it follows
that both v (x) and w (x) are £0 if x >0, £ > 0, x £ t. Consider the function
fx) = wx)v(x), x £ ¢. Clearly, f(x) - 1 as x + ¢, 30 we put f(¢) = L.
Also, v and w have the same sign when x # ¢.

d ( [ I) i n 5 0
— - y =W v~Ww = - <
dx w v wy v 16x2 <

and w'v — wv'is a decreasing function ofx. Since this function vanishes
at x = ¢, it follows that f' (x) <0 if x > ¢, and f'(x) >0 when 0 < x < .
Thus, f'(x) has a maximum at x = ¢, and 0 < f(x) < 1 for 0 < x, £ < oo,

4.7. Asymptotic solutions valid in the transition region

We assume that {(a, b) is a bounded interval, a < ¢ < b, p (x) is real and
and twice continuously differentiable fora < x < b, pix) <0 fora < x < ¢,
px)>0 forc<x<b, p(c)=0,p'(c) #0, r(x, A) is a bounded function
of x and A when a < x < b and A varies over a sectorial domain S: |A} > A,,
¢, < arg A < ¢, and for each fixed A in S, r(x, ) is a continuous function
of x for a < x < b. We then consider the differential equation

1 y" +\p&)+r(x, Mly=0,

and introduce ¢ (x) as the (unique) continuously differentiable real solu-
tion of 4.5(7), i.e.

2 x
(2) ;[<4{>(x)]:"2=f(:|5)=fc p()1* dt x>¢

2 c
s [ )] = flx) = f: [~p (£)]1V2 dt x < c.

lere ¢(x) >0 when x > ¢, ¢p(x) <O when x < ¢, and all fractional powers
have their positive values.
The functions

(3) Y_@)=[p’' @)]™* A=A e*7 =5 ¢(x)] m=0, £1

Y,(x) = [¢’ @172 Bil-A"? ¢ (x)]
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satisfy the differential equation
4) Y"'x)+ [ A’p(z)+% ¢, =} ] Y=0,

‘where

3 (")
i¢.=3-? == (¢.>

is the Schwarzian derivative of ¢. This differential equation follows from
4.6(1) and 4.5(7). Since the differential equations (1) and (4) differ in
terms which are comparatively small, we consider the Y’s as leading
terms of formal solutions.

Under the above assumptions, the differential equation (1) possesses
solutions which are .represented asymptotically, in appropriate sectors
of the complex X-plane, by the Y 2m=-1,0,1, 2 The proof is similar
to the proofs given in sections- 3.3, 3.4, and 4.3; and it will be conducwd
in several steps.

Let Y(x) be any solution of (4), let K (x, t) be that solution of (4)
which satisfies the initial conditions

: JK
dx
and let a <x < b; then the solution of the integral equation
© y&=Y@+]] K@ F Ny@)d,
° .

where
(7)‘ F(z, )t)--;- 1, x} = r(x, A),

satisfies (1).

Proof: Equation (6) is a Volterra integral equation with a continuous
kernel. For any fixed value of A in §, the existence ‘and uniqueness of
the solutionfollows from the general theory of Volterra integral equations
(orcan be established as in sec.4.3). This solution is twice continuously
differentiable, and substitution in (1) shows that y satisfies the differ-
ential equation (1).
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Fora<zx,t<bandall Ain S,

®)  [K(x, &) F(z, M|

< A exp| % Rell-A%? & (x)]1¥2 - [-A%3 ¢ (2)]1¥2}]
TALAATYE + o O (AT + g ) [ () @7 ()12

where A is independent of x, t, A. All fractional powers have their princi-
pal values. '

The proof of (8) is different according to the position of x and ¢
relative to ¢ and relative to each other, and according to arg A. We shall
give the details fora < x, t <c, —n/2 < arg A < /2. Since

YoY,-Y Y, =-A"(4i'Bi - Ai Bi')=n""' AY?,
by (3) and 4.6 (4), we see that
(9) Kz, &)=mA™2 [Y () Y, () - Y () Y, (2)]

satisfies (4) and (5). Now, ¢ < 0, and |arg(--/\2’3 ¢)| < 7/3, so that the
expressions 4.6(14) and 4.6(15) are bounded, and there is a B inde-
péndent of x, ¢, and A such that

B expl- % Re[-A%® ¢]*/2}
@+ M5 g [ 12 7

with a similar estimate for Y ,. Applying these estimates in (9), we prove
(8) in this case.

In order to prove (8) in any other case, express Y and Y, and hence
K, in terms of two linearly independent solutions of (4.), of wlnch one is
bounded as A » « (this was the solution Y, in the above case), and then
apply estimates derived from 4.6(14), (15).

We shall now establish the existence »f solutionsy , m=-1,0, 1, 2,
corresponding to, and asymptotically r=presented by, the Y _. It will be
necessary to impose, in each case, restrictions on arg A. These re-
strictions correspond to the introduction of branch-cuts in the A%-plane.

For y, and y, we assume Re A > 0, and define these functions as
solutions of the Volterra integral equations

(10) yo(x)= Yo (x) + [ 7 Klx, e) F (e, Ny () de

[Y,l <

-
| ——— — TN P am PO 5
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A1) y,(x) =Y, (x) + [ K(x, £) Fle, N y, (¢ de.

Foc any fixed A in S, the existence of the solutions of these intecral
equations follows from the general theory of Volterra integral equations
(or Ly successive approximations). We shall prove that Yo~ Yoy, ~Y,
as A- o, Re A >0,

¥ReA>0,ImA#0,anda<x <b,orif A>0 anda <x <c, we have
Y, #0, Y, #0. In this case we may nut Yo=Yozpy,=Y,z, and
obtain i ~.xal equations for z and - .. Since under these circumstances
4.6(14) aa 4.6(15) are bounded, and bounded away from zero, we have

Yo(l) B [¢l(x) ]l/z |)\|-V°+ ld)(x)l 174
Yo@ |77 Lo @ IALTYE + g (0]

2
X exp (—5- Ret [- A¥? ¢ (£)]¥2 - [- A% ¢(x)]3’2¥) ;

and & similar estimate for |Y,()/Y,(x)]. Combining these estimates with
(8), we obtain inequalities,

Y () C

12 = K(x, t) F(e, X ;

(12) G (x, t)F(e, N) | < N @ 6@
a<t<x<b and ImA#£0, or a<t<x<c and A>0.
Y, (0) C

13 2 K(x, t)F(¢, A

W) Ny, @ K& Fe | < T e o

a<xg<b, |t-c|<|x-c|, and ImA#D0,
or a<x<t<c and AD>O0

for the kevzels of the integral equations for z  and z,. For each fixed
A, the intz2gral equation for z_,m=0, 2 has a bounded solution. Let
Z _ (X be the maximum of |z, (x)] for @ < x < b. From the integral equa-
tion and (12), (13),

de

c b
A 1+ — A —_—
Z s<1es z_()f T

AR, SR P P S
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For sufficiently large |A|, [Z_(A)] < 2, and from (10), (11), (12), (13),
(14) y ()=Y_ () [1+ O]  uniformly in x, as A= e, m=0,2

provided that Re A > 0, @ < x < b, and also that in case of areal A, x is
restricted toa < x < c.

In the case of a positive real A, Y and Y, have zeros when x > ¢, and
(14) fails to hold near such zeros. An appropriately modified result can
be derived from (10) and (11) by using (9) and estimates of ¥, (¢), Y, (¢).
From (9)

Yo@ =Y @[+ a2 [XY () Fle, Ny, (e)de]

—aA TRy @) R Y @) F G Ny, (o) de
Herc the integrals can be broken up,
Srefoelr,
(14) may be used in the first integral, and thus it can be proved
15) y, @)=Y, &)1+ 0N+ Y, x)0™Y),
uniformly in x, as A-w, c<x<b, A>O0.
Similar is the proof of
(16) y,(x) =Y, @) [L+ 0N+ Y ) 0N,

uniformly in x, as A->e, c<xgb, A>O0.

Equations (14) to (16) describe completely the asymptotic properties of
yoandy,.

‘Lhe work on y,, is similar. We define y , and y_, by the integral
equations

a7 y, &) = Y_(x)—fzb Kz, ) F (e, Ny () de m=1, -1,

and analyze the solutions of these cquations in a manner similar to the
analysis of (10), (11), assuming Im A > 0 in the case of y,, and Im A <0
in the case of y _,. Y, and Y _, have zeros when X is imaginary and x <c,
and in this case the asymptotic forms need some modification. The final
results are

—— s —— e - ~‘ e T, s P w7 T
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(18) y,(x)=Y,x)[1 + O(A™")], uniformlyin =z, as A=
a<x<b, ImA>20, ReAd#0 or c<g<x<bh, ~iA>0

(19) y, &)=Y, @ [1+0Q"N+Y_,(x) 00",

uniformly in x, as A=+, a@a<x<c, -iA>0

(20) y_,(x)=Y_,(x)[1+O0MX™")], uniformlyin x, as -
a<x<b, ImA<0, ReA#£0, or c<a<b, iA>0

@)y @D=Y_ ) [1+00"N+Y,x00N",

uniformly in x, as A+, a<x<c, iA>O.

Equations (14) to (16) and (18) to (21) establish the result stuic 1 ..:
the beginning of this section. By a more careful discussion of the inu-gra
equations it is possible to show that also.y! ~Y!.

H r(x, A) can be expanded in powers of A™', then it is poss! “
develop formal solutions of (1). The approximations discussed iz °a1s
section appear as the leading terms of the formal solutions. As in tue
case discussed in the earlier parts of this chapter, there are two kinde
of formal solutions. The first kind corresponds to 4.2(3), and it 1s of the
form

(22) Y() 3 a (A" Y () 3 B )AT,

n=0 n=0

where Y is a solution of (4), and the a_(x) and 8 (x) are functions of 2
which are independent of A. Recurrent differential equations for these
functions may be obtained by substituting (22) in (1), and equating
coefficients of like powers of A. This approach was used by Langer (1949).

A second kind of formal solution corresponds to 4.2(9). ‘this solution
is of the form (3), except that instead of ¢ (x) we have a function ¢(x, A)
which depends on A, and possesses a formal expansion

2 £ 6,627,

where ¢ (x) is the differentiable real solution of 4.5(7), and recurrent
differential equations for ¢, ¢, ... are obtained by substituting

g S ”7__.',.’—-'\“.'-4" -
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(M) ¢’ 5 Ai (=AY @)

in (1), and equating coefficients of powers of A. Such solutions were
used by Cherry (1950).

The differential equation

y" +qlx, )y =0, glx, A) = qu (x) AZ""

is more general that (1), because it contains the term g, (x)A. This term
causes certain additional complications which were also discussed by
Langer (1949).

'Lhe extension of thesé results to the case of a complex variable was
‘undertaken both by Langer (1932) and Cherry (1950); the extension to
uribounded x was investigated by Cherry (1950).

4.8. Uniform asymptotic representations of Bessel functicns

. We conclude with an application of the results of the preceding sec-
tion to the differential equation 4.4(3), thereby obtaining an asymptotic
representation of J3(Ax) which holds, uniformly for all positive x, as
A » oo, Re A > 0. The result to be obtamcd includes the resuits of sec.
4.4 as far as they relate to J)(Ax), and in addition fills the gap, b <x <a
(6 <1 < a) left by the work of sec. 4.4.

Let -us, then, apply the methods of the preceding section to the
differential equation 4.4 (3), where

, 1 1
0)) p(x)=1—F : rix, A)=‘§; i

The transition point is at x = 1. The function ¢ is determined by the
differential equation

> 1
) . ¢¢' =1- - s
x
and 4.7(2) becomes
3) —:— (¢ )12 = f' (tT2=-1)"24;

: 1+(1-x2)*
e mxt s log S ETEY g 0<xgl
x

¢ ;Y
S b
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4) :—32- [A(x)]¥2 = f’x(l— V2 g = (x2 =~ 1) - cosT' 27! = f(x)

].Sx(eo,

see also 4.4 (4) and (14).
Since ¢ (x) is an analytic function, and ¢’ (x) £ O, clearly
1 1 m 3 (X} 2 1
Fx)==1¢, zl - r(x, )\)=—2——— iy e 5
2 2 & 4 \¢ 4z

is a continuous function of x for 0 < x < eo. To investigate the behavior
of F(x)as x> 0 or x » oo, we use the chain rule

du \?
tp, xb =1, ul <—> + {u, x}
dx

for the Schwarzian derivative, with u = 8 when x < 1, and u = f when

x > 1. By a simple computation

582 1 1 58°' 2 44+ x*
’32+_gﬁ,x;- 5 = Bz - x220<x<1
1887 2 4x* 18P A(1-x2)

F(x)=

5 ’ 2 2 .
f il 1<x<oo,

Fe) =B Ta-29¢
From (3) and (4),
B = O(log x), B' =071 as xz-0
f=0(), f'=0(Q) ‘a8z e,
and it follows that
(5) F(x)=0Cl(x log x)72] as x>0
Fix)=0(z"? as  x- oo,
Furthermore, as in sec. 4.7,
@ |2 ke o|<—00©F L I
Y, () ’ T e @ e@* ] 1-¢2

except near zeros of Y (x).

— Wﬁ)"—“—
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We thus see that we may take x = O as the fixed limit in the integral
equation for z, (x). For the kernel we have estimates from (5) and (6)
which show that the kernel is integrable in (0, =). 'lhe method of sec.
4.7 may be applied to our problem in spite of the singular point at x = 0
of the differential equation. Equation 4.7 (14) with m = 0 holds, and since

it follows from (3) and (6) that
* 1
dt =0 ( de )= 0( )
o ¢(log ¢)3 log x

/ “1y ()
o x
as %~ 0,

(=)
we see that for small x, the term O(A™') in 4.7(14) may be strengthened
to

1
™ 0 ———-)
A log x

We then conclude that the differential equation 4.4(3) possesses a
soli-.ion vy, (x) for which

K(x, ¢) F(¢)

0
YO

@) y,x)=¢' KA1 ) [1+00™")],

holds for 0 < x < oo, A + o, Re A > 0, except that in the case of a positive
real A\, and x > 1, the error term needs some modification. For 0 < x < b
< 1, the error term may be strengthened to (7).

In order to identify y, in terms of Bessel functions, let us take
0 <x <b<1in (8), so that ¢(x) < $(b) <0, the Airy function may be
replaced by its asymptotic representation 4.6(11), the O-term may be
strengthened to (7), and we obtain

_l -1/2 \=1/6 gt =172 (_ \V/4 ASB 1
y°(x)_2 2R ¢ SR [1+0<i\logx>

1 1
e V2 )16 4 NB | 1L 0 .__-__.) 0<x<b<l,
2 Alog x

where a is the function defined in 4.4(5). A comparison with 4.4(6) and
4.4(13) now shows that

V2 .
A -
J)\()tx)=m e N \NHVE T2 Yo (x) 0<x <

i -

"-"_,..—;-..'—n‘/
——— e
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and hence
9 J\(rx)= _2,,-_/7 e ANE (2 Y12 4 A3 B) 1+ O],
A r+1)

withthe same remarks about the error term as in (8). By applying Stirling’s
formula to I'(A + 1), this result may be put in the simpler, if weaker form

1 -
(10) Jy(ax)= (—2— A % ¢') A @) 100N,

uniformly in x, 0 < x < e, as A + o, Re A > 0, except that the error term
needs some modification near zeros of Ai{—A%¥3 ¢). Note that in (10)
the error term contains the error of Stirling’s formula and cannot be
strengthened for small x.

In the process of deriving (7) we have seen that our present result
includes 4.4(1). Let us show that (7) also includes the sum of the two
equations 4.4 (2). 'lo do this, we assume x > a > 1, ¢(x) > ¢ (a) > 0, and
apply 4.6(12) to show that

J\(Ax) ~ (‘;—ﬂ)\x> ™ ' 4 ¢ 7% cos[Af(x) n/4]

l1<a<x<ew

or

1
J}\()\x)'v (; n)«x) % a(x) cos[Af(x) - n/4] l1<a<x <o,

and this is in agreement with 4.4 (2).
The main result of this section, (6), has béen extended to complex
values of x, and approximations of higher order have been obtained by

Cherry (1948).

. e, il e —
e B SRR L i
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